Лента событий:
old добавила решение задачи "Сумма четырёх делителей" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
11
всего попыток:
13
Все точки плоскости покрашены в ДВА цвета. Докажите, что на этой плоскости существует равносторонний треугольник, все вершины которого – одного цвета.
Задачу решили:
14
всего попыток:
20
На плоскости задана квадратная решётка n×n точек. Расстояния между соседними точками равны 1. Нарисованы n2 окружностей радиуса 1 с центрами в точках решётки. На сколько частей эти окружности делят плоскость если n = 41.
Например, при n = 3 девять окружностей делят плоскость на 41 часть.
Задачу решили:
11
всего попыток:
12
Внешняя область правильного n-угольника разбивается на f(n) частей по такому принципу: две точки принадлежат одной и той же части, тогда и только тогда, когда они видят целиком одни и те же стороны n-угольника. Например, точки A и B на рисунке видят целиком одни и те же две стороны:
Найдите f(100)+f(101).
Задачу решили:
6
всего попыток:
7
Перед вами квадратная сетка из 6×6 точек, и на ней – пример замкнутой ломаной, которая обладает следующими свойствами:
Легко видеть, что суммарная длина её вертикальных звеньев больше суммарной длины её горизонтальных звеньев. А для каких квадратных сеток из N×N точек в пределах 2≤Ν≤13, существует замкнутая ломаная, у которой выполняются описанные выше свойства, а также суммарная длина её вертикальных звеньев равна суммарной длине её горизонтальных звеньев? В качестве ответа введите строку из чисел – подходящих N (по возрасстанию). Например, если подходящими являются только сетки 2×2 и 13×13, то ответ выглядит так: 213.
Задачу решили:
11
всего попыток:
13
На треугольной сетке из точек, расположенных в виде равностороннего треугольника, на стороне которого находятся N точек, построена замкнутая ломаная, обладающая следующими свойствами: • Её звенья лежат строго на линиях сетки, а вершины – в её узлах. • Она проходит ровно по одному разу через каждый узел сетки.
На рисунке изображён пример такой ломаной при N=5.
При каких значениях N в пределах 2 ≤ N ≤ 30 это возможно? Введите в ответе сумму этих значений.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|