![]()
Лента событий:
tubaki решил задачу "Точка деления медианы" (Математика):
![]()
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
0
всего попыток:
0
Два числа таковы, что сумма=произведение=частное=? ![]()
Задачу решили:
0
всего попыток:
0
Рассмотрим 10-мерный гиперкуб с ребром длиной 25, сложенный из 2510 единичных гиперкубиков двух цветов: чёрных и белых. Введём такую систему координат, что:
Таким образом, каждый из единичных гиперкубиков будет однозначно определяться 10-мерным вектором: координатами его центра. Каждая координата принимает целое значение в пределах: -12 ≤ xi ≤ 12. Сложим гиперкуб следующим образом. Первоначальный (внутренний, нулевой) слой: Все единичные гиперкубики, для которых соответствующие векторы имеют не меньше трёх равных нулю координат. Их выбираем чёрного цвета. Следующий (первый) слой: Все единичные гиперкубики, которые являются соседями гиперкубиков нулевого слоя, а сами нулевому слою не принадлежат. Их выбираем белого цвета. Два единичных гиперкубика назовём "соседними", если они имеют хотя бы одну общую (10-мерную) точку. На рисунке изображены примеры таких соседей в 3-мерном пространстве. Следующий (второй) слой: Все единичные гиперкубики, которые являюися соседями гиперкубиков первого слоя, а сами не принадлежат ни нулевому слою, ни первому. Их выбираем опять чёрного цвета. И так далее, пока не будет сложен весь гиперкуб: в каждом слое выбираются все соседи предыдущего слоя, которые сами не принадлежат ни одному из предыдущих слоёв, и они выбираются другого цвета, чем гиперкубики предыдущего слоя. Определите цвета единичных гиперкубиков, которым соответствуют векторы:
Введите ответ в виде последовательности нулей и единиц, где чёрному цвету соотвествует единица, а белому – ноль.
![]()
Задачу решили:
0
всего попыток:
0
Решить уравнение: √((x2-1)*(x2+2x)+1)=x2-2. В ответе указать сумму всех возможных корней. ![]()
Задачу решили:
0
всего попыток:
0
В каждой из двух футбольных командах «МАКСИ» и «МИНИ» по одиннадцать игроков, которые надели майки с номерами от 1 до 11. Тренеры обоих команд построили игроков своих команд в круг. Каждый тренер перемножил номера соседних футболистов своего круга, и сложил полученные 11 произведений. При этом у тренера команды «МАКСИ» получилась наибольшая возможная сумма S, а у тренера команды «МИНИ» получилась наименьшая возможная сумма s. Найдите разность S – s и укажите её в ответе. ![]()
Задачу решили:
0
всего попыток:
0
Решить уравнение x2-x-1=√(x3+5). В ответе указать сумму корней. ![]()
Задачу решили:
0
всего попыток:
0
Решить в целых числах x+xy+y=47. В ответе указать количество пар решений.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|