Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
79
всего попыток:
120
Есть 4 кучи камней: в первой — 3 камня, во второй — 4, в третьей — 5, в четвёртой — 6. Играют двое, ходят по очереди. Каждым ходом разрешается либо взять один камень из любой (но только одной) кучи при условии, что после взятия в этой куче останется более одного камня, либо взять любую (но только одну) кучу целиком, при условии, что в этой куче не менее двух, но не более трёх камней. Выигрывает тот, кто возьмёт последний камень (сделает все кучи пустыми). Кто победит при правильной игре? Если первый игрок, введите 1, если второй — 2, если ничья — 0.
Задачу решили:
63
всего попыток:
143
Два игрока записывают 2n-значное натуральное число, используя лишь цифры 1, 2, 3, 4, 5. Первую цифру пишет первый игрок, вторую — второй, третью — опять первый, и так далее. Задача второго игрока добиться, чтобы число, полученное по окончании игры, делилось на 9. Задача первого — помешать второму. При каких n выигрывает первый, а при каких — второй? В ответе укажите количество значений n от 1 до 10 (включительно), при которых выигрывает первый.
Задачу решили:
62
всего попыток:
251
Имеется предмет, о котором известно, что его вес составляет целое число кг от 1 до 27. Также есть чашечные весы, на обе чашки которых можно класть гири. Определите наименьшее количество гирь, с помощью которых можно определить вес предмета.
Задачу решили:
197
всего попыток:
335
Имеется 10 кучек монет, по 10 монет в каждой. Все монеты одинаковы на вид, но одна кучка целиком состоит из фальшивых монет, но какая именно — неизвестно. Известен лишь вес настоящей монеты, а также установлено, что каждая фальшивая монета на 0,1 грамма тяжелее, чем нужно. Монеты можно взвешивать на пружинных весах со стрелкой, измеряющие вес с точностью до 0,1 грамма. Какое минимальное число взвешиваний нужно произвести, чтобы отыскать кучку, состоящую из фальшивых монет?
Задачу решили:
51
всего попыток:
762
Даны чашечные весы, имеющие особенность — они могут выдержать ровно 3 взвешивания (неважно в каком порядке) неравных грузов, после чего ломаются. Одинаковые веса можно уравновешивать на этих весах бесконечное количество раз. Среди N монет есть одна фальшивая, вес которой меньше настоящих. Найдите максимальное N при котором можно найти фальшивую не более, чем за 7 взвешиваний на этих весах.
Задачу решили:
30
всего попыток:
159
У Вас есть 10 одинаковых стеклянных шариков. Вы бросаете их — можно по одному — с разных этажей 1015-этажного небоскрёба, чтобы выяснить, на каком этаже они начинают разбиваться от падения. (Например, на пятом уже разбиваются, а на четвёртом еще нет.) Разрешается сделать не более n бросков и разбить все 10 шариков. Найдите минимальное значение n, при котором ещё возможно гарантированно определить, при броске с какого именно этажа шарики начинают разбиваться. Учтите, что шарик может разбиться и на первом этаже, а может не разбиться и на последнем.
Задачу решили:
64
всего попыток:
156
Перед двумя игроками кучка из 1000 спичек. В начале игры первый игрок берёт из неё любое количество спичек от 1 до 999, а затем каждый из игроков по очереди берёт любое число оставшихся спичек, но не больше, чем перед этим взял другой игрок. Ходы делаются по очереди, а выигрывает тот, кто возьмёт последнюю спичку. Какое наименьшее количество спичек должен взять в начале игры первый игрок, чтобы обеспечить себе победу при любых ходах второго игрока?
Задачу решили:
84
всего попыток:
567
Перед Вами 50 одинаковых на вид кубиков — 25 берёзовых и 25 сосновых. Любой сосновый кубик на полграмма легче любого берёзового. Ваша задача: используя чашечные весы без гирь, отложить две разного веса кучки из одинакового числа кубиков. Какое наименьшее число взвешиваний Вам потребуется?
Задачу решили:
34
всего попыток:
173
Перед Вами 56 одинаковых на вид кубиков — 28 берёзовых и 28 сосновых. Любой сосновый кубик на полграмма легче любого берёзового. Ваша задача: используя чашечные весы без гирь, отложить две разного веса кучки из одинакового числа кубиков. Какое наименьшее число взвешиваний Вам потребуется?
Задачу решили:
137
всего попыток:
209
Для кодирования натуральных чисел с помощью буквенных последовательностей был предложен следующий принцип шифрования: Числам 1, 2, 3 и 4 ставятся в соответствие буквы A, B, C и D. Последующим 16 числам ставятся в соответствие двухбуквенные коды в следующем порядке: 5=AA, 6=AB, 7=AC, 8=AD, 9=BA, 10=BB, …, 18=DB, 19=DC, 20=DD. Аналогично для последующих чисел используются трехбуквенные коды (от 21=AAA до 84=DDD), четырехбуквенные и т.д. Укажите буквенный код числа 295?
(В ответе нужно записать последовательность из латинских букв.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|