img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 785
всего попыток: 935
Задача опубликована: 29.04.09 11:14
Прислал: Science img
Источник: 57-я школа г. Москвы
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: vitsel (Виталий Леонтьев)

На дороге длиной 40 км стоят несколько пеньков (больше одного!). Первый турист идёт пешком со скоростью 5 км/ч, и на каждом пеньке отдыхает одинаковое целое число часов. Второй турист едет на велосипеде со скоростью 8 км/ч и отдыхает на каждом пеньке в два раза дольше, нежели первый турист. Вышли и пришли туристы одновременно. Остаётся один вопрос: а сколько же там было пеньков?

Задачу решили: 255
всего попыток: 569
Задача опубликована: 29.04.09 11:14
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: ODG (Игорь Логвинов)

В романе 50 глав: 25 с нечётным количеством страниц и 25 — с чётным. Первая глава начинается с нечётной страницы, а каждая из остальных — с новой страницы, сразу следующей за предыдущей главой. Какое максимальное число глав может начинаться с чётной страницы?

Задачу решили: 677
всего попыток: 2711
Задача опубликована: 05.05.09 21:21
Прислал: dasaneleq img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Anton_Lunyov

Хозяйка испекла для гостей пирог. К ней может прийти либо 10, либо 11 человек. На какое наименьшее число кусков ей нужно заранее разрезать пирог так, чтобы его можно было поделить поровну как между 10, так и между 11 гостями?

Задачу решили: 639
всего попыток: 820
Задача опубликована: 05.05.09 21:21
Прислал: Science img
Источник: из 57-й школы г.Москвы
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: levvol

За один взмах волшебной палочкой волшебная фея может наколдовать либо 100 карамелек и 100 ирисок, либо 101 карамельку и 98 ирисок, либо 103 карамельки и 94 ириски. Она взмахнула палочкой несколько раз, и у неё получилось 2943 карамельки. Сколько получилось ирисок?

Задачу решили: 74
всего попыток: 628
Задача опубликована: 05.05.09 21:21
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: julikV (Юлиан Ваннэ)

Имеется 729 карточек со всеми трёхзначными номерами от 111 до 999, состоящими из цифр от 1 до 9, и 81 ящик со всеми двузначными номерами от 11 до 99, опять-таки не содержащими нулей. Каждую карточку можно положить в ящик с номером, который получается вычёркиванием одной из цифр номера карточки. Например, карточку 123 можно положить в ящики 12, 13 и 23. Какое наибольшее число ящиков могут оказаться пустыми после того, как все карточки разложены по ящикам указанным образом?

Задачу решили: 107
всего попыток: 499
Задача опубликована: 08.05.09 23:16
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: crazor (Дмитрий Мисерев)

Сколькими разными способами можно раскрасить рёбра куба тремя цветами так, чтобы в каждой вершине сходились рёбра трёх разных цветов? (Две раскраски считаются разными, если они не переходят друг в друга при любом вращении куба.)

Задачу решили: 242
всего попыток: 672
Задача опубликована: 11.05.09 09:56
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Hasmik33

Найти остаток от деления на 7 числа

 Формула

Задачу решили: 149
всего попыток: 242
Задача опубликована: 14.05.09 18:10
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: putout (Дмитрий Лебедев)

Найти максимальное значение выражения

|...|x1x2|−x3|−x4|...−x998|−x999|,

где x1, x2, x3, x4, ..., x998, x999 — различные натуральные числа от 1 до 999.

Задачу решили: 236
всего попыток: 589
Задача опубликована: 14.05.09 18:10
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

Имеется 2009 мешочков с 1, 2, 3,..., 2008 и 2009 монетами. Каждый день разрешается взять из одного или нескольких мешочков по одинаковому числу монет. За какое минимальное число дней можно взять все монеты? 

Задачу решили: 84
всего попыток: 547
Задача опубликована: 14.05.09 18:10
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Сначала напишем на доске две единицы: 1 1. На втором шаге напишем между ними их сумму и получим: 1 2 1. На каждом следующем шаге будем вписывать между всеми соседними числами, написанными на предыдущих шагах, их суммы. Получим: 1 3 2 3 1, 1 4 3 5 2 5 3 4 1, 1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1,... Сколько раз мы напишем число 2009, если будем продолжать эту процедуру до бесконечности?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.