Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
132
всего попыток:
1048
На полу коридора длиной 120 метров лежат 25 ковровых дорожек общей длиной 600 метров. Каково максимально возможное число кусков пола, не застеленных дорожками?
Задачу решили:
149
всего попыток:
200
Существует теория, что ночная бабочка для навигации использует Луну: она летит по прямой, поддерживая постоянным угол между направлением своего полёта и направлением на Луну. Если же она примет за Луну уличный фонарь или другой близкий к ней источник света, то полетит вокруг него по спирали, приближаясь или удаляясь от него. (Пограничный случай полёта по окружности бывает лишь в теории.) Через сколько секунд ночная бабочка долетит до фонаря, если он находится в 18-ти метрах от неё, летит она со скоростью 1 м/с и поддерживает угол 60° между направлением своего полёта и направлением на фонарь? (Бабочка и фонарь — это точки в пространстве.)
Задачу решили:
374
всего попыток:
1277
Имеются две шестерёнки с одинаковыми зубьями, но разного диаметра: одна в пять раз больше другой. Большая шестерёнка неподвижна, а маленькая катится по большой, делая вокруг неё один оборот. Сколько оборотов сделает маленькая шестерёнка вокруг своей оси?
Задачу решили:
149
всего попыток:
271
Каждая сторона правильного треугольника делится на 9 равных отрезков, через концы которых проводятся всевозможные прямые, параллельные сторонам. В результате чего большой треугольник разбивается на 81 маленький, любые два из которых, имеющие общую сторону, называются соседними. Какое максимальное количество маленьких треугольников можно обойти, если разрешается двигаться от треугольника к любому соседнему, но нельзя проходить по одному и тому же треугольнику дважды?
Задачу решили:
209
всего попыток:
496
В пустой комнате, имеющей форму многоугольника, горит одна лампочка, но ни одна стена не освещена полностью. Каково минимально возможное число стен в комнате?
Задачу решили:
469
всего попыток:
684
Окружим Землю вдоль экватора ремнём так, чтобы он плотно прилегал к поверхности по всей длине. Землю будем считать идеальным шаром с радиусом 6 400 000 метров. Увеличим длину ремня на 1 метр и приподнимем его над экватором так, чтобы расстояние от ремня до линии экватора было одинаковым по всей длине. Чему будет равно это расстояние? В ответе укажите ближайшее целое число сантиметров.
Задачу решили:
123
всего попыток:
390
В стране 21 аэропорт. Авиационное сообщение между ними осуществляют несколько авиакомпаний, каждой из которых разрешается совершать любые рейсы между 5 аэропортами. При каком наименьшем числе авиакомпаний можно перелететь из любого аэропорта в любой другой без пересадки?
Задачу решили:
110
всего попыток:
715
Окружим Землю вдоль экватора ремнём, так чтобы он плотно прилегал к поверхности по всей длине. Землю будем считать идеальным шаром с радиусом 6 400 000 метров. Увеличим длину ремня на 1 метр. Теперь возьмём за одну точку ремня и натянем его так, чтобы ремень плотно прилегал к противоположной точке экватора, в результате точка, за которую мы потянули, поднимется над экватором на некоторую высоту. Чему будет равна эта высота? В ответе укажите ближайшее целое число метров.
Задачу решили:
163
всего попыток:
214
Среди участников шахматного турнира юношей было в 7 раз больше, чем девушек, и они вместе набрали в 3 раза больше очков, чем все девушки. Сколько девушек участвовали в турнире? (Турнир проводился по круговой системе: каждый играл с каждым по две партии — одну белыми, а другую чёрными; за выигрыш партии участник получал одно очко, за ничью — 1/2 очка, за проигрыш — 0.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|