img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 149
всего попыток: 200
Задача опубликована: 25.05.09 23:32
Прислал: demiurgos img
Источник: П.В.Маковецкий "Смотри в корень!"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Существует теория, что ночная бабочка для навигации использует Луну: она летит по прямой, поддерживая постоянным угол между направлением своего полёта и направлением на Луну. Если же она примет за Луну уличный фонарь или другой близкий к ней источник света, то полетит вокруг него по спирали, приближаясь или удаляясь от него. (Пограничный случай полёта по окружности бывает лишь в теории.)

Через сколько секунд ночная бабочка долетит до фонаря, если он находится в 18-ти метрах от неё, летит она со скоростью 1 м/с и поддерживает угол 60° между направлением своего полёта и направлением на фонарь? (Бабочка и фонарь — это точки в пространстве.)

Задачу решили: 374
всего попыток: 1277
Задача опубликована: 24.05.09 22:13
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: student1806 (Руслан Газизов)

Имеются две шестерёнки с одинаковыми зубьями, но разного диаметра: одна в пять раз больше другой. Большая шестерёнка неподвижна, а маленькая катится по большой, делая вокруг неё один оборот. Сколько оборотов сделает маленькая шестерёнка вокруг своей оси?

Задачу решили: 149
всего попыток: 271
Задача опубликована: 27.05.09 20:42
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

Каждая сторона правильного треугольника делится на 9 равных отрезков, через концы которых проводятся всевозможные прямые, параллельные сторонам. В результате чего большой треугольник разбивается на 81 маленький, любые два из которых, имеющие общую сторону, называются соседними. Какое максимальное количество маленьких треугольников можно обойти, если разрешается двигаться от треугольника к любому соседнему, но нельзя проходить по одному и тому же треугольнику дважды?

Задачу решили: 136
всего попыток: 384
Задача опубликована: 25.05.09 22:46
Прислал: demiurgos img
Источник: Г.Гамов, М.Стерн "Занимательные задачи"
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: NNN

Перед Вами две урны, в которых лежат 20 белых и 20 чёрных шаров, но сколько и каких шаров лежат в каждой урне — неизвестно. Вы наудачу выбираете урну, а затем извлекаете из неё шар. Зависит ли вероятность извлечь белый шар от того, как первоначально разложены шары в урнах? В ответе введите максимальное значение этой вероятности в виде несократимой дроби p/q, где p и q — натуральные числа.

Задачу решили: 209
всего попыток: 496
Задача опубликована: 24.05.09 11:41
Прислал: demiurgos img
Источник: Собеседование в 57-й школе г. Москвы
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

В пустой комнате, имеющей форму многоугольника, горит одна лампочка, но ни одна стена не освещена полностью. Каково минимально возможное число стен в комнате?

Задачу решили: 469
всего попыток: 684
Задача опубликована: 29.05.09 11:30
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Aspid_Vlas

Окружим Землю вдоль экватора ремнём так, чтобы он плотно прилегал к поверхности по всей длине. Землю будем считать идеальным шаром с радиусом 6 400 000 метров. Увеличим длину ремня на 1 метр и приподнимем его над экватором так, чтобы расстояние от ремня до линии экватора было одинаковым по всей длине. Чему будет равно это расстояние? В ответе укажите ближайшее целое число сантиметров. 

Задачу решили: 123
всего попыток: 390
Задача опубликована: 29.05.09 17:49
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: julikV (Юлиан Ваннэ)

В стране 21 аэропорт. Авиационное сообщение между ними осуществляют несколько авиакомпаний, каждой из которых разрешается совершать любые рейсы между 5 аэропортами. При каком наименьшем числе авиакомпаний можно перелететь из любого аэропорта в любой другой без пересадки?

Задачу решили: 110
всего попыток: 715
Задача опубликована: 30.05.09 14:13
Прислал: admin img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: Anton_Lunyov

Окружим Землю вдоль экватора ремнём, так чтобы он плотно прилегал к поверхности по всей длине. Землю будем считать идеальным шаром с радиусом 6 400 000 метров. Увеличим длину ремня на 1 метр. Теперь возьмём за одну точку ремня и натянем его так, чтобы ремень плотно прилегал к противоположной точке экватора, в результате точка, за которую мы потянули, поднимется над экватором на некоторую высоту. Чему будет равна эта высота? В ответе укажите ближайшее целое число метров. 

Задачу решили: 140
всего попыток: 316
Задача опубликована: 30.05.09 22:50
Прислал: demiurgos img
Источник: В.И.Арнольд "Задачи для детей от 5 до 15 лет"...
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: fedyakov

Иголку длиной 10 см случайно бросают на разлинованную бумагу, расстояние между соседними линиями которой тоже 10 см. Сколько процентов составляет вероятность того, что упавшая иголка пересечёт линию бумаги? Ответ округлите до ближайшего целого числа.

Задачу решили: 163
всего попыток: 214
Задача опубликована: 09.06.09 01:22
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

Среди участников шахматного турнира юношей было в 7 раз больше, чем девушек, и они вместе набрали в 3 раза больше очков, чем все девушки. Сколько девушек участвовали в турнире? (Турнир проводился по круговой системе: каждый играл с каждым по две партии — одну белыми, а другую чёрными; за выигрыш партии участник получал одно очко, за ничью — 1/2 очка, за проигрыш — 0.)

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.