img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 40
всего попыток: 50
Задача опубликована: 01.04.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

Сколько существует натуральных пятизначных чисел, которые заканчиваются на 6 и делятся на 3?

Задачу решили: 33
всего попыток: 51
Задача опубликована: 03.04.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Сколько существует натуральных пятизначных чисел, делящихся на 3, в десятичной записи которых встречается цифра 6?

Задачу решили: 37
всего попыток: 51
Задача опубликована: 05.04.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Сколькими способами можно разменять 1 рубль, имея монеты 1, 2, 10, 20 и 50 копеек?

Задачу решили: 34
всего попыток: 55
Задача опубликована: 07.04.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Сколько раз за последние 400 лет по григорианскому календарю 1 января выпадало на воскресенье?

Задачу решили: 27
всего попыток: 36
Задача опубликована: 11.04.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Имеется 100 сейфов, каждый из которых можно открыть только своим ключом. Ключи случайным образом поместили по одному во все сейфы и захлопнули дверцы. Затем взломали 2 сейфа и получили 2 ключа. Найдите вероятность того, что получится открыть все остальные сейфы не взламывая.

Задачу решили: 32
всего попыток: 45
Задача опубликована: 15.04.20 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: levvol

Имеется 90 карточек с номерами от 1 до 90. Из них вытаскивают 5. Какова вероятность того, что на них будут хотя бы два последовательных номера?

Задачу решили: 26
всего попыток: 63
Задача опубликована: 19.04.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Бабушка к Пасхе покрасила яйца: 10 красных, 10 желтых и 10 розовых. Первой к ней в гости пришла внучка и случайным образом взяла три яйца. Затем к ней в гости пришел внук и тоже случайным образом взял три яйца. Какова вероятность того, что внук взял яйца трех различных цветов?

Задачу решили: 27
всего попыток: 30
Задача опубликована: 02.05.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Имеется 14 кубиков: два кубика с числом 1, два кубика с числом 2, два кубика с числом 3 и так далее, два кубика с числом 7. Расположите эти кубики в ряд так, чтобы между кубиками с числом 1 был ровно 1 кубик, между кубиками с числом 2 было ровно 2 кубика, и так далее, между кубиками с числом 7 было ровно 7 кубиков. Построенное решение определяет 14-значное число, записанное цифрами от 1 до 7. Поскольку кубики можно расставить несколькими способами, то в ответе укажите наименьшее 14-значное число, соответствующее полученному решению.

14 кубиков - 23421314

Для примера, на рисунке показано решение для 8 кубиков с числами от 1 до 4 и число 23421314, соответствующее этому решению.

Задачу решили: 24
всего попыток: 78
Задача опубликована: 18.05.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Найдите в порядке возрастания 2020-е число среди всех натуральных чисел, сумма цифр которых равна 2020.

Задачу решили: 22
всего попыток: 81
Задача опубликована: 03.07.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: kondor1969 (Руслан Бакиров)

Пять точек на плоскости расположены так, что среди всех прямых соединяющих любые две из них нет параллельных, совпадающих и перпендикулярных друг другу. Через каждую из исходный точек проводятся перпендикуляры ко всем прямым, соединяющим каждые две из остальных четырех точек. Какое максимальное количество точек пересечения этих перпендикуляров между собой окажется, не считая исходных пять точек.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.