Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
11
всего попыток:
16
В выпуклом четырехугольнике с целочисленными сторонами два противоположных угла прямые. Смежные стороны, образующие один из этих углов, равны между собой. Смежные стороны, образующие другой из этих углов, не равны между собой. При этом НОД любых трех неравных между собой сторон равен 1. Найдите минимальное значение площади, которым обладают как минимум два таких неконгруэнтных четырехугольника.
Задачу решили:
26
всего попыток:
28
На доске было написано 5 целых чисел по возрастанию, отделяя запятыми. Сложив их попарно, получили следующие 10 чисел: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15. Запишите в ответе написанные на доске 5 целых чисел одним числом, убрав запятые.
Задачу решили:
28
всего попыток:
30
4 взрослых и 5 детей построили стену за 20 дней, 5 взрослых и 4 детей построили её за 16 дней. За сколько дней эту стену построят 4 взрослых и 3 детей?
Задачу решили:
23
всего попыток:
30
На катетах треугольника АВС, равных |АС|=3 и |ВС|=4, построили во внешнюю сторону треугольника правильные треугольники ACD, BCE. Найти квадрат площади треугольника KLM, вершины которого являются серединами отрезков АС, ВС, DE соответственно.
Задачу решили:
17
всего попыток:
20
Квадраты ABCD, A1B1C1D1, A2B2C2D2 расположены по убыванию площадей следующим образом: первые 2 квадрата с совмещением сторон CD и А1В1(вершины D и А1 совмещены, вершина В1 лежит на стороне CD), вершина D2 третьего квадрата совмещена с D и А1, а сам квадрат внутри первых двух квадратов так наклонен, что вершина В1 лежит на стороне В2С2 и прямая А2В2 проходит через вершину С. Площадь первого квадрата больше площади второго квадрата в 2 раза. Известно, что все три площади имеют целочисленное значение. Найти наименьшую сумму площадей всех трех кваратов.
Задачу решили:
22
всего попыток:
32
Найти наименьшее количество множителей факториала 2023!, на которых нужно разделить его, чтобы частное оканчивалось на 1 (единицу).
Задачу решили:
25
всего попыток:
26
В тупоугольном равнобедренном треугольнике АВС с основанием АС с вершины А провели высоту AH, с точки Н провели перпендикуляры НМ и НК к сторонам АВ и АС соответственно. Найти длину отрезка МК, если известно, что |АВ|=5, |АС|=8.
Задачу решили:
23
всего попыток:
30
В квадрате ABCD построен треугольник АКМ, где вершина К лежит в середине стороны ВС, вершина М лежит на стороне CD. Найти отношение площадей треугольника АКМ и квадрата ABCD при наименьшей сумме длин сторон КМ и АМ.
Задачу решили:
20
всего попыток:
28
Квадраты ABCD, A1B1C1D1 и треугольник расположены по убыванию площадей следующим образом: квадрата с совмещением сторон CD и А1В1(вершины D и А1 совмещены, вершина В1 лежит на стороне CD), внутри квадратов расположен треугольник, вершины которого расположены в центрах квадратов и в середине отрезка AD1. Найти сумму наименьших целочисленных площадей всех трех фигур, при известном соотношении площадей двух квадратов 2:1.
Задачу решили:
16
всего попыток:
69
Вписанная и вневписанная окружности прямоугольного треугольника с радиусами r и R соответственно имеют две точки касания с гипотенузой, расстояние между которыми равно d. Найти наименьшее значение суммы R+r+d при различных целочисленных значениях R, r, d.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|