Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
65
всего попыток:
136
Сколькими способами можно расставить 38 попугаев в шеренгу так, чтобы каждый попугай стоял либо на своём месте, либо на соседнем (например, десятый попугай может стоять либо на десятом, либо на девятом, либо на одиннадцатом месте)?
Задачу решили:
123
всего попыток:
176
Каждую грань куба разбили на 4 равных квадрата, которые раскрасили в красный, синий и белый цвета так, что квадраты, имеющие общую сторону, оказались окрашены в разные цвета. Найдите наибольшее возможное число красных квадратов.
Задачу решили:
59
всего попыток:
154
В компании N друзей. На протяжении нескольких дней, ежедневно, какие-нибудь трое из них ужинали вместе. Притом за это время каждые двое (из N) поужинали вместе ровно по одному разу. Какие остатки может давать N при делении на 6? В ответе введите без пробелов все возможные остатки в порядке возрастания.
Задачу решили:
65
всего попыток:
179
Сколько процентов составляет вероятность того, что среди 5 (случайно выбранных) точек на сфере найдутся 4, лежащие на одной замкнутой полусфере? (Замкнутая полусфера — это полусфера, включающая собственную границу.)
Задачу решили:
64
всего попыток:
209
Каждую грань куба разбили на 16 равных квадратиков, которые раскрасили в красный, синий и белый цвета так, что квадраты, имеющие общую сторону, оказались окрашены в разные цвета. Найдите наибольшее возможное число красных квадратов.
Задачу решили:
64
всего попыток:
182
Каждую клетку прямоугольника 6×8 раскрасили в один из 12 различных цветов. Пара цветов называется плохой, если найдутся две клетки, имеющие общую сторону и закрашенные этими цветами. Найдите наименьшее число плохих пар.
Задачу решили:
26
всего попыток:
31
Сколькими способами можно записать все различные целые числа от 1 до n в одну строку так, чтобы выполнялось следующее условие: где-то после любого числа k, написанного не на последнем месте, должно встретиться хотя бы одно из чисел k−1 и k+1?
Задачу решили:
89
всего попыток:
331
В трёхмерный космический бой играют в параллелепипеде 5×6×7, состоящем из 210 кубических ячеек. Сколько ячеек пересекает большая диагональ параллелепипеда?
Задачу решили:
19
всего попыток:
81
В оранжерее на космической станции в виде прямоугольника 713×137 расставлены горшки с цветами. На каждом цветке сидит по одной бабочке. Трижды хлопала дверь, и всякий раз каждая из 713×137 бабочек перелетала по диагонали на соседний цветок. После каждого хлопка на некоторых цветах оказывалось по несколько бабочек, а на некоторых — ни одной, и при этом каждая бабочка, в очередной раз перелетая, не возвращалась на свой прежний цветок. Найдите наименьшее возможное число цветов, на которых не сидит ни одной бабочки после трёх хлопков.
Задачу решили:
48
всего попыток:
135
Каждую грань параллелепипеда 3х5х7 разбили на единичные квадратики, которые раскрасили в красный, синий и белый цвета так, что квадраты, имеющие общую сторону, оказались окрашены в разные цвета. Найдите наибольшее возможное число красных квадратов.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|