![]()
Лента событий:
TALMON
добавил
комментарий к решению задачи
"Два угла внутри треугольника" (Математика):
![]()
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
20
всего попыток:
30
При каком значении параметра P система: x1 + 2x2 + 4x3 + 8x4 + 8x5 = 16 не имеет решения? ![]()
Задачу решили:
15
всего попыток:
18
Два эллипса каждый с минимальной суммой натуральных a и b (a > b) заданы в канонической форме: x2/a2 + y2/b2 = 1. На одном лежат ровно 36 точек с целочисленными координатами, а на другом ровно 28 точек с целочисленными координатами. Найти отношение площадей эллипсов меньшей к большей. ![]()
Задачу решили:
7
всего попыток:
36
I. Найдите количество эллипсов x2/a2 + y2/b2 = 1 (a и b натуральные, a>b, a+b=6630), на каждом из которых лежат ровно 36 точек с целочисленными координатами. II. То же самое, только a+b=8125 (вместо 6630) Введите в ответе сумму этих двух количеств (I и II). ![]()
Задачу решили:
23
всего попыток:
28
На каждом из трех рисунков 1-3 в прямоугольной системе координат Oxy изображены парабола и прямая. На каком из этих рисунков изображены график квадратного трехчлена и график его производной. ![]()
Задачу решили:
10
всего попыток:
16
Рассмотрим 10-мерный гиперкуб с ребром длиной 25, сложенный из 2510 единичных гиперкубиков двух цветов: чёрных и белых. Введём такую систему координат, что:
Таким образом, каждый из единичных гиперкубиков будет однозначно определяться 10-мерным вектором: координатами его центра. Каждая координата принимает целое значение в пределах: -12 ≤ xi ≤ 12. Сложим гиперкуб следующим образом. Первоначальный (внутренний, нулевой) слой: Все единичные гиперкубики, для которых соответствующие векторы имеют не меньше трёх равных нулю координат. Их выбираем чёрного цвета. Следующий (первый) слой: Все единичные гиперкубики, которые являются соседями гиперкубиков нулевого слоя, а сами нулевому слою не принадлежат. Их выбираем белого цвета. Два единичных гиперкубика назовём "соседними", если они имеют хотя бы одну общую (10-мерную) точку. На рисунке изображены примеры таких соседей в 3-мерном пространстве. Следующий (второй) слой: Все единичные гиперкубики, которые являюися соседями гиперкубиков первого слоя, а сами не принадлежат ни нулевому слою, ни первому. Их выбираем опять чёрного цвета. И так далее, пока не будет сложен весь гиперкуб: в каждом слое выбираются все соседи предыдущего слоя, которые сами не принадлежат ни одному из предыдущих слоёв, и они выбираются другого цвета, чем гиперкубики предыдущего слоя. Определите цвета единичных гиперкубиков, которым соответствуют векторы:
Введите ответ в виде последовательности нулей и единиц, где чёрному цвету соотвествует единица, а белому – ноль.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|