img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 24
всего попыток: 31
Задача опубликована: 23.06.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Дана ломаная M0M1M2M3M4M5M6M7. Все углы M0M1M2, M1M2M3, ..., M5M6M7 равны. Их величина такая, что, если бы все звенья были одинаковой длины, то ломаная была бы замкнута, образуя правильный семиугольник. Однако, длины звеньев другие:

|M0M1| = 5
|M1M2| = 8
|M2M3| = 11
|M3M4| = 14
|M4M5| = 17
|M5M6| = 20
|M6M7| = 23

Угол кончика запятой

Соединив отрезком крайние точки M7 и M0, получим восьмиугольник. Найдите размер его наименьшего угла в градусах.

Задачу решили: 38
всего попыток: 53
Задача опубликована: 29.09.21 08:00
Прислал: admin img
Источник: https://archimedes-lab.org/
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

3 фонарика

Найти угол α в градусах.

Задачу решили: 11
всего попыток: 94
Задача опубликована: 20.10.21 08:00
Прислал: user033 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Дан выпуклый четырехугольник ABCD, в котором проведены диагонали, пересекающиеся в точке K. При этом длины всех восьми полученных отрезков AB, BC, CD, AD, AK, BK, CK, DK это различные целые числа. Найдите сумму длин этих отрезков для четырехугольника с наименьшей площадью.

Задачу решили: 26
всего попыток: 58
Задача опубликована: 17.12.21 08:00
Прислал: solomon img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Треугольник со сторонами арифметической прогрессии 6, 10, 14 заключен между описанной и вписанной окружностями. Найти сумму квадратов расстояний от точек касания вписанной окружности со сторонами треугольника до центра описанной окружности. 

Задачу решили: 37
всего попыток: 41
Задача опубликована: 12.01.22 08:00
Прислал: admin img
Источник: Задачи и головоломки на FB
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Дан эллипс с полуосями 5 и 12. Найти расстояние от центра эллипса до центра окружности, касающейся (внешним образом) эллипса и двух его параллельных касательных.

Эллипс и окружность

Задачу решили: 23
всего попыток: 32
Задача опубликована: 18.03.22 08:00
Прислал: TALMON img
Источник: Задачи и головоломки на FB
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На рисунке изображена 11-конечная звезда с концами в 11-и точках, определяющих на параболе y=x² десять дуг одинаковой длины, от точки (-2, 4) до точки (2, 4).

11-конечная звезда на параболе

Чему равна сумма углов концов звезды (в градусах)?

Задачу решили: 19
всего попыток: 37
Задача опубликована: 11.04.22 08:00
Прислал: admin img
Источник: Задачи и головоломки на FB
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

У Кости есть игрушечная железная дорога в виде кольца, состоящая из n=13 равных дуг.

Железная дорога

Костя решил докупить ещё несколько таких же дуг, чтобы удлинить путь (при этом он уже не будет круговым, но должен остаться замкнутым и без самопересечений). Какое минимальное количество дуг ему хватит, чтобы осуществить задуманное?

Задачу решили: 25
всего попыток: 61
Задача опубликована: 13.01.23 08:00
Прислал: admin img
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

2 воздушных змея

Как показано на рисунке △ABC разделяется на 3 части линиями DE и FG. DE || BC. FG делит трапецию BDEC на два "воздушных змея" BFGC и FDEG, все длины сторон в которых являются целыми числами. |GF| = |GC| = |GE| = 17, а |BD| = 35. Найти площадь синего треугольника △ADE.

Задачу решили: 12
всего попыток: 19
Задача опубликована: 26.05.23 08:00
Прислал: user033 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Внутри треугольника ABC выбрана точка из которой проведены отрезки к каждому из углов треугольника. В результате исходный треугольник разбился на три неконгруэнтных треугольника с целочисленными сторонами. Найдите минимально возможную площадь треугольника ABC. В ответе введите квадрат этой площади.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.