Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
25
всего попыток:
54
В параллелограмм вписана елочка так, как показано на рисунке. Площади трех частей параллелограмма равны 24, 25 и 26. Найдите площадь елочки.
Задачу решили:
28
всего попыток:
54
Четыре деревни расположены в вершинах квадрата стороной 2 км. Между ними построены дороги. В ответе укажите наименьшаую суммарную протяженность в метрах, округлив ее до ближайшего целого.
Задачу решили:
17
всего попыток:
28
Равносторонний треугольник имеет сторону длины n, n∈N. Все стороны треугольника разделены точками на единичные отрезки. В этот треугольник вписаны n-1 равносторонних треугольников, все вершины которых находятся в точках деления. При этом исходный треугольник оказался разделен на части. На картинке изображены треугольники при n=32. Найдите соотношение площади части, полученной в центре, к площади исходного треугольника, когда n стремится к бесконечности.
Задачу решили:
21
всего попыток:
31
Найдите наименьшее целое число L, что в квадрат L × L можно поместить прямоугольник 1 × 2024. С НОВЫМ ГОДОМ!
Задачу решили:
18
всего попыток:
23
Прямоугольник размера N x 1 помещается в прямоугольнике размера L x K. Определим функцию f(K, L) как наибольшее целое N. Найдите сумму: f(1, 6) + f(2, 6) + f(3, 6) + f(4, 6) + f(5, 6) + f(6, 6).
Задачу решили:
17
всего попыток:
19
Прямоугольник размера N x 1 помещается в прямоугольнике размера L x K. Определим функцию f(K, L) как наибольшее целое N. Найдите f(9, 12) + f(9, 13).
Задачу решили:
13
всего попыток:
16
Два неперекрывающихся квадрата со сторонами a и b (a≠b) имеют общую вершину O. У каждого из них по две вершины лежат на окружности, а через A и B обозначены оставшиеся две вершины (см. рисунок). Найдите величину угла AOB в градусах, если он острый.
Задачу решили:
22
всего попыток:
29
Вершины четырехугольника ABCD лежат на параболе y = x2, диагонали AC и BD перпендикулярны. Известны абсциссы трех его вершин: xA = 23, xB = –24, xC = – 25. Найдите абсциссу вершины D этого четырехугольника.
Задачу решили:
26
всего попыток:
35
В координатной плоскости построены парабола y = x2 - 5x + 10 и окружность, пересекающая параболу в четырех точках A, B, C и D. Известны абсциссы трех точек: xA = 23, xB = –24, xC = – 25. Найдите абсциссу четвертой точки D.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|