Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
44
всего попыток:
92
На клетчатой бумаге отмечены точки A и B. Примем длину стороны клетки за 1. Посчитайте количество маршрутов идущих из A в B по сторонам клеток и имеющих длину 11. (Маршрут может менять направление только в углах клеток. Допускаются маршруты, проходящие несколько раз через одну вершину (включая A и B) или сторону клетки.)
Задачу решили:
78
всего попыток:
160
В четырехугольнике ABCD BC является диаметром описанной окружности. Известно, что |AB|2 = 450, |CD|2 = 25 и сумма углов B и C равна 135°. Найдите значение |AD|2.
Задачу решили:
46
всего попыток:
115
Дана окружность, радиус которой равен 36, и центр которой - точка O, и две точки на этой окружности: A и B. Дана точка P. Длины отрезков: |PO| = 54 |PA| = 25 |PB| = 29 Прямая PA пересекает окружность в ещё одной точке A’. Прямая PB пересекает окружность в ещё одной точке B’. Обозначим: C – точка пересечения прямых AB и A’B’, D – точка пересечения прямых AB’ и A’B, M – точка пересечения прямых CD и PO. Чему равна длина отрезка OM?
Задачу решили:
61
всего попыток:
162
Точка М - середина стороны BC треугольника ABC. Известно, что. Найдите максимальное значение . Ответ дайте в градусах.
Задачу решили:
22
всего попыток:
101
Через точку на окружности единичного радиуса (r=1) проведена прямая на расстоянии от ее центра . На прямой вне окружности и слева от точки отметим на расстоянии от нее точку , а на расстоянии слева от точки - точку и проведем через них окружности с центром в т. так, что получим три различные концентричные окружности (см. рис.). Через каждую точку проведем касательную к окружности на которой она лежит так, что пересечение этих касательных образуют треугольник . Из двух прямых, которые можно провести через точку на окружности на данном расстоянии от ее центра - рассматривается только одна из них. Из двух лучей, на которые окружность делит эту прямую, точки откладываются только на одном. Так, как это показано на рисунке. Если и натуральные числа, существует точек и соответствующих им точек таких, что площади всех треугольников равны, причем . Найдите все такие точки , в ответе укажите сумму соответствующих им .
Задачу решили:
71
всего попыток:
137
Пусть AB - диаметр некоторой окружности. Из точек A и B, под углами и к AB, проведем хорды AE и BD, пересекающиеся в точке C. Найдите площадь треугольника CDE, если длина касательных FE и FD равны.
Задачу решили:
51
всего попыток:
105
В треугольник ABC со сторонами AB=62, BC=962, AC=960, будем вписывать n окружностей одинакового радиуса (n от 1 до бесконечности, натуральное) так, что все они касаются стороны AC, соседних окружностей, а крайние окружности касаются сторон AB и BC соответственно. (см.рис.). Существует конечная последовательность k натуральных чисел ai {a1,a2,a3,...,ak} таких, что если вписывать ai окружностей в данный треугольник, у полученных окружностей радиусы будут натуральными числами. Найдите эту последовательность. В ответе укажите сумму всех ее членов .
Задачу решили:
15
всего попыток:
727
Площадь выпуклого пятиугольника ABCDE равна 180. На его сторонах AB, BC, CD, DE и EA выбраны точки K, L, M, N и O так, что |AK|/|KB|=|BL|/|LC|=|CM|/|MD|=|DN|/|NE|=|EO|/|OA|=2. Найдите минимальное и максимальное целочисленные значения площади пятиугольника KLMNO. В ответе укажите их произведение.
Задачу решили:
66
всего попыток:
88
Площадь четырёхугольника равна 67. Найдите минимально возможное значение суммы произведений длин его противоположных сторон (т.е. выражения ac+bd, если одна пара противоположных сторон имеет длины a и c, а другая пара - b и d).
Задачу решили:
119
всего попыток:
184
Даны две концентрические окружности. Хорда большей из них является касательной к меньшей окружности и имеет длину 100. Чему равна площадь кольца между двумя окружностями. Ответ округлите до ближайшего целого.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|