Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
41
всего попыток:
50
Найти максимальное число x такое, что при любой раскраске в два цвета квадрата со стороной 1 в нём обязательно найдётся отрезок с одноцветными вершинами длины не меньше, чем x.
Задачу решили:
80
всего попыток:
201
Какое наибольшее количество королей можно расставить на шахматной доске так, чтобы ровно половина из них не угрожала никому из остальных?
Задачу решили:
145
всего попыток:
168
На гипотенузе AB прямоугольного треугольника ABC взяты две точки M и N так, что AC=AM, BC=BN. Сколько градусов составляет величина угла MCN?
Задачу решили:
86
всего попыток:
183
На острове находится военная база. Каждый из солдат, служащих на этой базе, однажды сделал два заявления: 1) на базе нет и ста солдат, которые стреляют лучше меня; 2) по крайней мере тысяча солдат на базе владеют приёмами рукопашного боя лучше, чем я. Известно, что каждый из солдат либо всегда говорит правду, либо всегда лжёт. Кроме того, меткость стрельбы у всех солдат разная, как и уровень владения рукопашным боем. Сколько солдат служат на базе?
Задачу решили:
40
всего попыток:
236
Квадрат N×N (N≥1000 — натуральное число) разбит на k квадратов, наименьший из которых имеет сторону 1. Найдите минимально возможное k.
Задачу решили:
50
всего попыток:
159
В квадрате размером 13×13 клеток отмечены центры k клеток. При этом никакие четыре отмеченные точки не являются вершинами прямоугольника со сторонами, параллельными сторонам квадрата. При каком наибольшем k это возможно?
Задачу решили:
65
всего попыток:
128
Прямоугольник ABCD имеет стороны AB=11 и BC=5. Для треугольника EFG точка A — точка пересечения высот, B – центр описанной окружности, C — середина FG, D — основание высоты, проведенной из вершины E. Найдите FG.
Задачу решили:
50
всего попыток:
176
В трёх стаканах находится a, b и c мл воды, где 0<a<b<c≤200. Разрешена такая операция: количество воды в любом стакане можно удвоить, переливая из любого другого стакана, в котором для этого достаточно воды. Цель: посредством таких операций полностью опорожнить какой-нибудь стакан. Найдите число троек целых чисел a, b, c, для которых цель не может быть достигнута.
Задачу решили:
70
всего попыток:
103
На плоскости проведены n прямых. Каждая пересекает ровно 2011 других. Найдите все возможные значения n. В ответе укажите сумму всех значений.
Задачу решили:
63
всего попыток:
172
Даны две параллельные прямые, расстояние между которыми — целое число. На одной прямой находится точка A, а на другой — точки B, C, D, E (именно в таком порядке). Расстояние между любыми двумя из этих пяти точек — натуральное число, BC=4. Найдите наименьшее расстояние между A и E.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|