img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: TALMON добавил комментарий к задаче "Зеркальные числа" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Это открытая задача (*?*)
Задача опубликована: 21.08.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Найдите наименьший положительный корень уравнения: 8x3-6x+1=0. Напишите точный ответ в виде математического выражения без кубических корней.

Задачу решили: 40
всего попыток: 67
Задача опубликована: 06.09.17 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Найти целые числа a, b и c такие, что уравнение x5+2x4+ax2+bx+c=0 имеет действительные корни только 1 и -1. В ответе укажите произведение abc.

Задачу решили: 43
всего попыток: 83
Задача опубликована: 15.09.17 08:00
Прислал: leonid img
Источник: "Квант"
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Найдите количество всех решений в целых числах уравнения х3+у3+6ху=8, принадлежащих множеству: {|x|<1000, |y|<1000}.

Задачу решили: 36
всего попыток: 41
Задача опубликована: 29.09.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Три деда примерно одного возраста (разность их возрастов не более 10 лет). Их возрасты – натуральные числа, являющиеся корнями уравнения: x3 - Ax2 + 14838x – C = 0, где A и C - также натуральные числа. Найдите число C.

Задачу решили: 38
всего попыток: 53
Задача опубликована: 18.10.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Пусть 0 < x ≤ y ≤ z и xy+yz+zx=3. Найти максимум xy3z2.

Задачу решили: 38
всего попыток: 90
Задача опубликована: 20.04.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найти количество целочисленных пар (x, y) таких, что 0 ≤ y ≤ 2017 и x2+y2+(x+y)2=y3

Задачу решили: 38
всего попыток: 65
Задача опубликована: 15.06.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

По окружности радиуса 1 движутся по часовой стрелке три точки со скоростями 1, 2, 3. Они начали движение с одной позиции. Найдите максимальную площадь S треугольника, который они образуют. В качестве ответа укажите ближайшее целое значение 10×S, где S - площадь. 

Задачу решили: 21
всего попыток: 26
Задача опубликована: 12.09.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: mikev

Числа 1, 2, 3, ..., 2018 разделены на две группы:
a1 < a2 < ... < a1009 и b1 > b2 > ... > b1009.

Для каждого такого разбиения вычисляется сумма |a1-b1|+|a2-b2|+...+|a1009-b1009|. И затем все полученные различные значения сумм для всех возможных разбиений складываются. Какое значение получится?

Задачу решили: 34
всего попыток: 49
Задача опубликована: 09.11.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Функция f(n) такая, что f(n)=1 при n<0 и f(n)=1-f(n-1)f(n-3)f(n-4) при n≥0. Найдите сумму значений функции от 0 до 2018.

Задачу решили: 49
всего попыток: 66
Задача опубликована: 21.11.18 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Между столбами А1 и А2 натянут провод длинной 48 м. Воробей вначале сел в середину А3 провода А1А2, затем прыгнул в середину А4 отрезка А2А3, затем прыгнул в середину А5 отрезка А3А4, и т.д. Прыгая так бесконечно долго, воробей стремится к некоторой точке В. Найдите расстояние А1В.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.