Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
107
всего попыток:
148
Катер проплывает мимо острова с постоянной скоростью. Расстояния до острова в 8, 10 и 11 часов были равны 7, 5 и 11 километров соответственно. Каким будет расстояние в 12 часов?
Задачу решили:
81
всего попыток:
115
3 литра воды разлили в два сосуда. Из каждого сосуда поочереди переливают половину воды, находящейся в нем, в другой сосуд. Найдите отношение объема воды в сосуде с меньшим количеством к объему воды в сосуде с большим после 100 переливаний. Объемы воды в литрах округлите с точностью до 1 миллилитра.
Задачу решили:
33
всего попыток:
189
Лева клонирует любимую овечку. Имя клона формируется на основе даты (день месяца, день недели, год) клонирования: первые 2 символа - заглавные буквы латинского алфавита, третий - номер дня недели, далее, "_" и год. Все буквы в алфавитном порядке занумерованы, начиная с 1. Из пары букв имени одна должна быть гласной (A, E, I, O, U, W, Y), другая - согласной и сумма их номеров должна равняться числу (дню) в месяце. Так для клона, произведенного 20 сентября 2013г., в пятницу, имя может иметь вид SA5_2013. За один день нельзя сделать больше одного клона. Если имена должны быть уникальными, какое максимальное количество клонов может произвести на свет Лева за 2012-2013 годы?
Задачу решили:
111
всего попыток:
149
Решите уравнение (x возводится в степень x бесконечное число раз). В качестве ответа введите значение x9.
Задачу решили:
76
всего попыток:
92
На окружности с центром в точке O и радиусом 1 отмечены точки A и B. Хорда AB является диаметром второй окружности, при этом на этой окружности имеется точка C такая, что расстояние OC является максимальным. Найдите квадрат длины хорды AB.
Задачу решили:
78
всего попыток:
91
Для натуральных чисел a, b и c верны следующие равенства a3-b3-c3=3abc, a2=2(b+c). Чему равно a+b+c?
Задачу решили:
62
всего попыток:
69
Функция f определена на множестве всех натуральных чисел, принимает значения в множестве натуральных чисел, и одно из её значений равно 1. Кроме того известно, что для любого натурального n выполнено равенство f(n+f(n)) = f(n). Найдите f(2014).
Задачу решили:
32
всего попыток:
72
Найти количество целых чисел n (1 ≤ n ≤ 300) для которых существует многочлен степени n с целыми коэффициентами, коэффициентом при xn равен 1, а его значение при любых целых значениях x, не делится на n.
Задачу решили:
81
всего попыток:
146
Какое количество точек, у которых хотя бы одна из координат является целым числом, лежит на окружности x2+y2=49?
Задачу решили:
25
всего попыток:
329
Три из четырех сторон четырехугольника имеют длины 3, 4 и 5 и два угла у него прямые. Пусть S - сумма различных площадей всех возможных таких четырехугольников. Чему равна целая часть S?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|