Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
113
всего попыток:
404
Найти наименьшее целое число, большее единицы и которое нельзя получить из неё при помощи нескольких последовательных увеличений на целое число процентов от 1 до 100 (причём после каждого увеличения должно получаться также целое число).
Задачу решили:
131
всего попыток:
206
Все натуральные числа от 1000 до 2000 записаны подряд: 100010011002...19992000. Сколько раз в этом ряду после нечётной цифры идёт чётная?
Задачу решили:
79
всего попыток:
206
На доске выписаны в ряд нули и единицы (встречаются и те, и другие). Любые две цифры, между которыми написано 10 или 15 цифр, совпадают. Каково максимально возможное число цифр на доске?
Задачу решили:
127
всего попыток:
200
От пристани А вниз по течению реки отправились одновременно катер и плот. Доплыв до пристани Б, катер немедленно повернул обратно и встретил плот ровно через 3 часа после отплытия от А. Доплыв до А, катер снова повернул и догнал плот ещё через 2 часа после первой встречи с ним. Через сколько минут после второй встречи с плотом катер причалит к Б?
Задачу решили:
91
всего попыток:
208
Погремушка состоит из синего кольца и надетых на него двенадцати шариков: девяти красных и трёх жёлтых. Сколько может быть выпущено различных погремушек? (Погремушка не меняется при её переворачивании и передвижении шариков по кольцу.)
Задачу решили:
195
всего попыток:
296
После того, как учительница Марьиванна пересадила Вовочку с первого ряда на второй, Ванечку – со второго ряда на третий, а Машеньку – с третьего ряда на первый, средний возраст учеников, сидящих в первом ряду, увеличился на неделю, сидящих во втором ряду – увеличился на две недели, а сидящих в третьем ряду – уменьшился на четыре недели. Известно, что на первом и на втором рядах сидят по 12 человек. Сколько человек сидит в третьем ряду?
Задачу решили:
161
всего попыток:
280
На ста карточках написаны различные целые числа от 1 до 100 (по одному числу на каждой карточке). Какое минимальное число карточек нужно наудачу взять, чтобы среди них обязательно нашлись три карточки, сумма чисел на которых делится на три?
Задачу решили:
340
всего попыток:
483
Из ряда натуральных чисел от 1 до 2009 вычеркнули все нечётные числа. Из оставшихся вычеркнули числа, стоявшие на нечётных местах. Эту процедуру повторяли до тех пор, пока не осталось только одно число. Найдите его.
Задачу решили:
83
всего попыток:
154
Из клетчатой бумаги вырезали квадрат 8×8 и все клетки в нём перенумеровали. Сколько имеется способов вырезать из этого квадрата две клетки так, чтобы его оставшуюся часть можно было разрезать на прямоугольники 1x2?
Задачу решили:
187
всего попыток:
229
В примере на сложение шестизначных чисел каждую цифру заменили на букву, после чего получилось: DONALD+GERALD=ROBERT (разным цифрам соответствуют разные буквы, одинаковым цифрам — одинаковые буквы). Чему равна сумма?
(По непроверенной информации, Генри Форд в качестве вступительного экзамена на должность инженера предлагал решить эту задачу и принимал только тех, кто укладывался в 15 минут.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|