Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
93
всего попыток:
374
В компании ровно у одного — один друг, ровно у одного — два друга и т.д. до пяти. Какое наименьшее число людей может быть в такой компании?
Задачу решили:
122
всего попыток:
184
Найти натуральное число, у которого произведение его делителей равно 331776.
Задачу решили:
159
всего попыток:
224
Вовочка и Марья Ивановна (школьная учительница Вовочки) должны проверить 30 школьных заданий. Учительница не отпустит его играть с папой в футбол прежде, чем закончится проверка всех 30 заданий - ее и Вовочкиных. Папа ждет Вовочку с нетерпением, и уже разминается на футбольном поле. Как Вовочке и учительнице лучше распределить между собой задания, чтобы Вовочка смог пораньше освободиться? На проверку одного задания он тратит в среднем 17 минут, а Марья Ивановна - 5 минут. Найдите наименьшее время (в минутах), которое им необходимо будет потратить на проверку всех заданий.
Задачу решили:
80
всего попыток:
93
Будем строить множества из 2012 произвольных действительных чисел так, чтобы сумма любых 777 чисел из этого множества была строго положительна. Какое максимально возможное количество отрицательных чисел может быть в таком множестве?
Задачу решили:
164
всего попыток:
172
Найдите двузначное число n, если известно, что числа 2n+1 и 3n+1 являются полными квадратами.
Задачу решили:
145
всего попыток:
233
Двое A и B играют в карты. Ставка в игре 1 рубль. Когда было сыграно ровно n игр, оказалось, что А выиграл 48 игр, а B выиграл 47 рублей. Чему равно n?
Задачу решили:
107
всего попыток:
193
В школе, где учится больше 225, но меньше 245 учеников, часть учеников являются отличниками, а остальные хорошистами. После контрольной работы 2/7 отличников стали хорошистами, а хорошисты так и остались хорошистами за исключением одного человека, который стал троечником. При этом хорошистов и отличников стало поровну. Сколько учеников могло быть в школе?
Задачу решили:
88
всего попыток:
174
В Бразилии живет много-много диких обезьян. Каждый год 2 января всех обезьян пересчитывают. В 1999 году количество обезьян увеличилось по сравнению с 1998 года ровно на 5%. И в 2000-2003 годах прирост поголовья обезьян каждый год тоже составлял ровно 5%, причем, по данным переписи 2003 года, в стране проживало не более 5000000 диких обезьян. Сколько диких обезьян жило в Бразилии 2 января 2003 года?
Задачу решили:
78
всего попыток:
98
Имеется три последовательных чётных числа. У первого из них нашли наибольший чётный собственный делитель, у второго — наибольший нечётный собственный делитель, у третьего — опять наибольший собственный чётный делитель. Известно, что сумма трёх полученных делителей быть равна 2013. Чему равно первое число последовательности ? (Делитель натурального числа называется собственным, если он отличен от 1 и этого числа)
Задачу решили:
77
всего попыток:
117
Два лыжника ходят на лыжах по кольцевой трассе, половина которой представляет с собой подъем в гору, а половина — спуск с горы. На подъёме их скорости одинаковы и вчетверо меньше их скоростей на спуске. Минимальное отставание второго лыжника от первого равно 4 км, а максимальное — 13 км. Найдите длину трассы.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|