Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
133
всего попыток:
154
Найдите площадь треугольника по радиусам его трёх вневписанных окружностей: ra=4, rb=6, rс=12 (ra — это радиус окружности, которая касается стороны a и продолжений сторон b и c).
Задачу решили:
180
всего попыток:
231
Квадрат со стороной 60 вписан в окружность. Найдите сторону квадрата, вписанного в один из полученных сегментов.
Задачу решили:
89
всего попыток:
280
На 101 шаре написаны различные натуральные числа от 2 до 102, а на 101 ящике — различные натуральные числа от 1 до 101. Сколькими способами можно разложить шары по ящикам (в каждый ящик по одному шару) так, чтобы номер шара делился на номер ящика?
Задачу решили:
143
всего попыток:
595
Гусеница сидит внутри закрытой коробки длиной 75 см, шириной 32 см и высотой 32 см, посередине боковой квадратной стенки на высоте 3 см от дна. Посередине противоположной стенки на 3 см ниже крышки в коробке есть маленькое отверстие, через которое гусеница хочет выбраться на свободу. Какое наименьшее число сантиметров ей придётся преодолеть, чтобы вылезти из отверстия? (Ответ округлите до ближайшего целого числа.)
Задачу решили:
75
всего попыток:
682
На клетчатой бумаге со стороной клетки 5 мм нарисована окружность радиуса 10 см, не проходящая через вершины клеток и не касающаяся сторон клеток. Какое минимальное число клеток она может пересекать?
Задачу решили:
104
всего попыток:
182
В треугольнике ABC с площадью 420 от вершин к противоположным сторонам проведены отрезки AK, BL, CM так, что их концы делят стороны в отношении 2:1 (BK=2·KC, CL=2·LA, AM=2·MB). Найдите площадь треугольника, ограниченного этими отрезками.
Задачу решили:
103
всего попыток:
199
Клетки шахматной доски раскрашены не в два цвета, а в несколько. Расстоянием между двумя клетками называется длина кратчайшего пути обычной шахматной ладьи от одной клетки до другой. (Длины сторон клеток равны единице.) Известно, что любые две клетки, находящиеся на расстоянии 6, — разных цветов. В какое наименьшее число цветов могут быть раскрашены клетки такой доски?
Задачу решили:
102
всего попыток:
178
В треугольной пирамиде OABC плоские углы при вершине O — прямые, а площади боковых граней OAB, OAC и OBC равны 51, 53 и 60 соответственно. Найти высоту пирамиды, опущенную из вершины O.
Задачу решили:
87
всего попыток:
212
Прямоугольный треугольник с углом 45° разрезан на n>1 подобных ему треугольников, никакие два из которых не совпадают по размерам. Найдите наименьшее возможное значение n.
(Задача носит исследовательский характер, поскольку никакого доказательства минимальности ответа, заложенного в систему, нам не известно. Вполне возможно, что участникам удастся его уменьшить!)
Задачу решили:
94
всего попыток:
208
Какое максимальное число сплошных треугольных пирамид, все рёбра которых равны 10 см, Вам удастся уложить в кубическую коробку с внутренними размерами 10×10×10 см (и закрыть её крышкой)?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|