Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
171
всего попыток:
572
На сколько процентов максимально возможная площадь круга, лежащего внутри куба, больше площади круга, вписанного в его грань?
Задачу решили:
140
всего попыток:
412
Сколько градусов составляет наименьший угловой размер большой диагонали куба, если смотреть с его поверхности (исключая, разумеется, концы самой диагонали)?
Задачу решили:
123
всего попыток:
463
Сколько имеется различных нумераций всех рёбер куба числами от 1 до 12, обладающих следующим свойством: сумма номеров рёбер, сходящихся в одной вершине, — одна и та же для всех вершин куба? (Две нумерации считаются разными, если они не переходят друг в друга при любом вращении куба.)
Задачу решили:
198
всего попыток:
375
Сколько квадратных сантиметров составляет максимально возможная площадь ортогональной проекции на горизонтальную плоскость правильного тетраэдра со стороной 10 см?
Задачу решили:
240
всего попыток:
333
Найдите минимальное натуральное число, которое увеличивается в два раза после перестановки его последней цифры в начало числа. (Все остальные цифры сдвигаются при этом вправо.)
(Предлагалась на "Первом математическом")
Задачу решили:
270
всего попыток:
432
С целью ухода от налогов первый из 5 друзей торговцев одолжил остальным столько денег, сколько было у каждого. Затем также поступил второй, потом третий, потом четвёртый, и наконец пятый. После всех пяти процедур капитал каждого не изменился. Каков капитал первого торговца, если капитал последнего составляет 100 экю?
(Предлагалась на "Первом математическом")
Задачу решили:
277
всего попыток:
916
Имеются две пирамиды: основание одной — треугольник, а другой — четырёхугольник; все рёбра пирамид равны. Пирамиды приложили друг к другу так, что две их треугольные грани полностью совпали. Сколько граней у получившегося многогранника?
Задачу решили:
161
всего попыток:
647
Какое минимальное количество шаров (любых размеров) нужно разместить вне заданной точки пространства так, чтобы каждый луч с началом в этой точке пересекал хотя бы один из шаров, а сами шары не пересекались?
Задачу решили:
74
всего попыток:
628
Имеется 729 карточек со всеми трёхзначными номерами от 111 до 999, состоящими из цифр от 1 до 9, и 81 ящик со всеми двузначными номерами от 11 до 99, опять-таки не содержащими нулей. Каждую карточку можно положить в ящик с номером, который получается вычёркиванием одной из цифр номера карточки. Например, карточку 123 можно положить в ящики 12, 13 и 23. Какое наибольшее число ящиков могут оказаться пустыми после того, как все карточки разложены по ящикам указанным образом?
Задачу решили:
215
всего попыток:
586
В колонию из 2009 бактерий попадает вирус. Через секунду он уничтожает одну бактерию. Ещё через секунду все бактерии и все вирусы делятся надвое. Далее каждый вирус через секунду после своего рождения уничтожает одну бактерию, а ещё через секунду после этого все бактерии и все вирусы делятся надвое. Через сколько секунд после попадания вируса все бактерии будут уничтожены?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|