Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
410
всего попыток:
1554
50 гангстеров стреляют друг в друга одновременно. Каждый стреляет в ближайшего к нему гангстера (или в одного из ближайших, если несколько человек находятся на равном расстоянии от него) и убивает его наповал. Найдите наименьшее возможное количество убитых. (Гангстеры — это различные точки на плоскости.)
Задачу решили:
194
всего попыток:
660
Наибольший общий делитель (НОД) натуральных чисел m и n равен 1. Каково максимально возможное значение НОД чисел m+100n и n+100m?
Задачу решили:
270
всего попыток:
432
С целью ухода от налогов первый из 5 друзей торговцев одолжил остальным столько денег, сколько было у каждого. Затем также поступил второй, потом третий, потом четвёртый, и наконец пятый. После всех пяти процедур капитал каждого не изменился. Каков капитал первого торговца, если капитал последнего составляет 100 экю?
(Предлагалась на "Первом математическом")
Задачу решили:
215
всего попыток:
586
В колонию из 2009 бактерий попадает вирус. Через секунду он уничтожает одну бактерию. Ещё через секунду все бактерии и все вирусы делятся надвое. Далее каждый вирус через секунду после своего рождения уничтожает одну бактерию, а ещё через секунду после этого все бактерии и все вирусы делятся надвое. Через сколько секунд после попадания вируса все бактерии будут уничтожены?
Задачу решили:
203
всего попыток:
593
Сколько различных целочисленных решений имеет неравенство |x|+|y|≤2009 ?
Задачу решили:
209
всего попыток:
247
Найдите все простые p и q, для которых выполняется равенство p+q=(p−q)3. В ответе укажите сумму всех таких p и q.
Задачу решили:
151
всего попыток:
274
Найдите наименьшее натуральное значение x, удовлетворяющее уравнению [10n/x]=2009 при некотором натуральном значении n. ([y] — это целая часть y, т.е. наибольшее целое число, не превосходящее y.)
Задачу решили:
133
всего попыток:
154
Найдите площадь треугольника по радиусам его трёх вневписанных окружностей: ra=4, rb=6, rс=12 (ra — это радиус окружности, которая касается стороны a и продолжений сторон b и c).
Задачу решили:
180
всего попыток:
231
Квадрат со стороной 60 вписан в окружность. Найдите сторону квадрата, вписанного в один из полученных сегментов.
Задачу решили:
75
всего попыток:
682
На клетчатой бумаге со стороной клетки 5 мм нарисована окружность радиуса 10 см, не проходящая через вершины клеток и не касающаяся сторон клеток. Какое минимальное число клеток она может пересекать?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|