img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 28
всего попыток: 37
Задача опубликована: 26.11.09 10:00
Прислал: TALMON img
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg
Лучшее решение: min

Представить в конечном виде: Cn0·xnCn1·(x−1)n+Cn2·(x−2)nCn3·(x−3)n+...+(−1)n·Cnn·(xn)n, где Cnk=n!/(k!·(n-k)!), n!=1·2·3·...·n, а 0!=1.

Задачу решили: 125
всего попыток: 177
Задача опубликована: 30.11.09 10:00
Прислал: TALMON img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Xamell10n (Александр Забалуев)

Найти площадь треугольника, высоты которого равны: 12, 63/5, 252/13.

Задачу решили: 71
всего попыток: 224
Задача опубликована: 17.09.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Сколько положительных действительных решений имеет каждое из следующих уравнений:

Напишите оба числа подряд, без пробелов. Порядок "многоэтажного" возведения в степень — сверху вниз. Формально в левой части каждого из уравнений написан предел:

Задачу решили: 36
всего попыток: 107
Задача опубликована: 19.12.10 08:00
Прислал: TALMON img
Источник: Euler Project
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Для натурального числа n обозначим C(n) количество натуральных чисел x меньших n, для которых x2+x+1 делится на n. Чему равно C(p), если p — простое? В ответе напишите без пробелов значения C(k·2k−1) при k=115, 123, 249, 362 и 384. Учтите, что числа k·2k−1 являются простыми при всех указанных значениях k.

Задачу решили: 45
всего попыток: 168
Задача опубликована: 22.12.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg

В трёх стаканах находится a, b и c мл воды, где 0<a<b<c≤200. Разрешена такая операция: количество воды в любом стакане можно удвоить, переливая из любого другого стакана, в котором для этого достаточно воды. Цель: посредством таких операций полностью опорожнить какой-нибудь стакан. Найдите число троек целых чисел a, b, c, для которых цель не может быть достигнута.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.