Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
55
всего попыток:
83
В левом нижнем углу клетчатой доски n x n стоит конь. Известно, что наименьшее число ходов, за которое конь может дойти до правого верхнего угла, равно наименьшему числу ходов за которое он может дойти до правого нижнего угла. Найдите n.
Задачу решили:
38
всего попыток:
403
Два десятичных числа сложили в "столбик" ABC Разные буквы означают разные цифры. Сколько возможно вариантов решения для этой записи?
Задачу решили:
41
всего попыток:
57
В колоде 2016 карт. Часть из них лежит рубашками вверх, остальные - рубашками вниз. За один ход разрешается взять несколько карт сверху, перевернуть полученную стопку и снова положить ее сверху колоды. За какое наименьшее число ходов при любом начальном расположении карт можно добиться того, чтобы все карты лежали рубашками вниз?
Задачу решили:
40
всего попыток:
91
Загадано число от 1 до 144. Разрешается выделить одно подмножество множества чисел от 1 до 144 и спросить, принадлежит ли ему загаданное число. За ответ "да" надо заплатить 2 рубля, за ответ "нет" — 1 рубль. Какая наименьшая сумма денег необходима для того, чтобы наверняка угадать число?
Задачу решили:
33
всего попыток:
55
N цифр — единицы и двойки — расположены по кругу. Изображенным назовем число, образуемое несколькими цифрами, расположенными подряд (по часовой стрелке или против часовой стрелки). При каком наименьшем значении N все четырехзначные числа, запись которых содержит только цифры 1 и 2, могут оказаться среди изображенных?
Задачу решили:
37
всего попыток:
65
На вечеринку пришли 100 человек. Затем те, у кого не было знакомых среди пришедших, ушли. Затем те, у кого был ровно 1 знакомый среди оставшихся, тоже ушли. Затем аналогично поступали те, у кого было ровно 2, 3, 4, . . . , 99 знакомых среди оставшихся к моменту их ухода. Какое наибольшее число людей могло остаться в конце?
Задачу решили:
14
всего попыток:
29
У вас 31 монетка, 2 из них фальшивые и имеют одинаковый вес (настоящие монетки также имеют одинаковый вес). Вы знаете какие именно и что они легче, а приятель знает, что фальшивых монеток ровно 2, но не знает легче они или тяжелей. За какое количество взвешиваний на чашечных весах без гирь и как вы сможете показать приятелю, что они легче и предъявить их?
Задачу решили:
38
всего попыток:
123
Есть 100 коробок, пронумерованных числами от 1 до 100. В одной коробке лежит приз и ведущий знает, где он находится. Зритель может послать ведущему пачку записок с вопросами, требующими ответа "да" или "нет". Ведущий перемешивает записки в пачке и, не оглашая вслух вопросов, честно отвечает на все. Какое наименьшее количество записок нужно послать, чтобы наверняка узнать, где находится приз?
Задачу решили:
41
всего попыток:
116
Матрицу 10x10 заполнили целыми числами от 1 до 100 так, что сумма любых двух чисел на соседних клетках не превосходит некоторого целого числа M. Найдите минимально возможное M.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|