img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: putout решил задачу "35 кг сахара" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 16
всего попыток: 28
Задача опубликована: 14.11.18 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: anrzej

Внутрь куба со стороной ребра 1 вложен другой куб так, что ровно 6 его вершин лежат на 6 разных гранях исходного куба. Определите минимально возможный размер стороны внутреннего куба.

Задачу решили: 66
всего попыток: 97
Задача опубликована: 26.11.18 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Часы показывают время в первой половине дня.

Часы

 Определите время.

Задачу решили: 24
всего попыток: 63
Задача опубликована: 03.12.18 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

На плоскости проведены три прямые, не пересекающиеся в одной точке. Известно, что радиусы всех окружностей, касающиеся всех трёх прямых - целые числа. Радиусы двух из этих окружностей равны 4 и 22. Найдите сумму радиусов всех остальных окружностей, касающихся тех же трёх прямых.

Задачу решили: 30
всего попыток: 67
Задача опубликована: 23.01.19 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: anrzej

Найдите количество многочленов P(x) четвертной степени с действительными коэффициентами таких, что P(x2)=P(x)*P(-x).

Задачу решили: 16
всего попыток: 55
Задача опубликована: 10.05.19 08:00
Прислал: avilow img
Источник: Книга "Математика, ЕГЭ-2009" (Легион)
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Одно из боковых ребер правильной шестиугольной призмы совпадает с диагональю куба, а противоположное ему ребро призмы содержит вершину куба. Найдите объем общей части этих тел, если ребро куба равно 1.

Задачу решили: 34
всего попыток: 53
Задача опубликована: 13.05.19 08:00
Прислал: admin img
Источник: Элементы большой науки: elementy.ru
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

Класс из 16 человек писал математический тест, в котором к каждому заданию предлагались 4 возможных варианта ответа. После сдачи решений выяснилось, что ни у каких двух учеников не совпало более одного ответа. Какое наибольшее число заданий могло быть в таком тесте?

Задачу решили: 26
всего попыток: 91
Задача опубликована: 24.05.19 08:00
Прислала: Hasmik33 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

40 пиратов и капитан делят клад в 100 золотых монет. Пираты хотят получить вместе 80 монет, а капитан хочет получить все. Он предлагает игру. Капитан делит все монеты на 2 кучки, потом на 3 и так далее, пока все кучки не станут равными одной монете. Всего 99 ходов. Если на каком-либо ходе пираты найдут 40 кучек, сумма монет в которых равна 80, то они получают эти деньги. На каком минимальном ходу пираты обязательно получат деньги, как бы ни делил их капитан?

Задачу решили: 24
всего попыток: 29
Задача опубликована: 12.07.19 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: VFChistov (Виктор Чистяков)

Треугольник ABC вписан в окружность. Точки M и H такие, что отрезок AM является диаметром, а отрезок AH перпендикулярен стороне BC.

Треугольник и 2 линии

Докажите, что |BH|=|MC|.

Задачу решили: 26
всего попыток: 42
Задача опубликована: 22.07.19 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: anrzej

На плоскости расположен равносторонний треугольник с длиной стороны x и точка. От точки до вершин треугольника расстояния 3, 5 и 7. Найдите все возможные треугольники и соответствующие им длины стороны x. В ответ введите сумму квадратов полученных значений различных x.

Задачу решили: 7
всего попыток: 34
Задача опубликована: 09.09.19 08:00
Прислал: TALMON img
Источник: Вписанные звёзды Н.Авилова (Задача 1878)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На доске рисуют звезду - замкнутую пятизвенную ломаную. Во внутренний пятиугольник этой звезды вписывают ешё одну звезду и так далее, как показано на рисунке.

Вписанные звезды

Сколько четырёхугольников будет нарисовано, когда число звёзд, построенных таким образом, достигнет 100?

Считаются и выпуклые, и вогнутые 4-угольники. Но не считаются вырожденные и самопересекающиеся.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.