Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
131
всего попыток:
182
Продолжите последовательность: Т464, Г6128, О8126, Д123020, ?
(Задача предложена Б.Бурдой во время "Колорадского конкурса".)
Задачу решили:
4
всего попыток:
5
На рисунке изображён пример полиомино - фигуры, состоящей из какого-то количества смежных клеток размером 1x1 на листе тетрадки в клеточку: На том же рисунке также изображён квадрат размером 8x8, в котором данное полиомино помещается целиком. В этом примере полиомино занимает на листе тетрадки 9 строк и 9 столбцов, а стороны большого квадрата наклонены к сторонам клеточек под углами с тангенсами -3/5 и 5/3. На рисунке также выделены вершины полиомино, лежащие на сторонах большого квадрата. Нас интересует количество различных (не конгруэнтных) полиомино, обладающих следующими двумя свойствами: Разобъём все полиомино, обладающие двумя указанными свойствами, по количествам строк и столбцов, которые они занимают на листе тетрадки. Обозначим: В ответ введите эти 5 чисел подряд, без пробелов, слева направо: n1n2n3n4n5
Задачу решили:
22
всего попыток:
80
Есть 4 конечных множества размера 20 каждый. Максимальный размер пересечения каких-либо двух из них равен 10. Какой минимальный размер объединения всех четырёх?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|