img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 95
всего попыток: 157
Задача опубликована: 12.11.10 12:00
Прислал: COKPAT img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Представим сумму

как несократимую дробь. На сколько нулей оканчивается знаменатель этой дроби?

Задачу решили: 90
всего попыток: 286
Задача опубликована: 24.11.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonidr321 (Леонид Розенблат)

Двузначное число записали три раза подряд. Получилось шестизначное число. Какое наибольшее количество натуральных делителей (включая единицу и само число) может иметь это шестизначное число?

Задачу решили: 113
всего попыток: 135
Задача опубликована: 24.11.10 12:00
Прислала: Marishka24 img
Источник: Литовская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Найдите наименьшее количество натуральных чисел, сумма квадратов которых равна 1995.

Задачу решили: 63
всего попыток: 184
Задача опубликована: 26.11.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Чему равно максимальное количество подряд идущих членов последовательности xn=n²+2010, наибольший общий делитель которых больше 1?

Задачу решили: 77
всего попыток: 112
Задача опубликована: 10.12.10 08:00
Прислала: Marishka24 img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: putout (Дмитрий Лебедев)

Каспениада (в дальнейшим для краткости именуемая Касей) задумала натуральное число и по секрету сообщила его Аппроксидону (Прокси). Йегиртон (Гиря) тоже задумал натуральное число и тоже по секрету сообщил его Прокси. Прокси вычислил сумму и произведение этих двух чисел, и один из результатов сообщил Касе и Гире. Результат был 2010. Узнав результат, Гиря сказал, что не знает, какое число задумала Кася. Услышав это, Кася сказала, что не знает, какое число задумал Гиря. Какое число задумала Кася?

Задачу решили: 76
всего попыток: 104
Задача опубликована: 13.12.10 12:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Найдите сумму: [(n+1)/2]+[(n+2)/4]+[(n+4)/8]+[(n+8)/16]+..., где [x] — наибольшее целое число, не превосходящее x. В ответе введите число цифр в её десятичной записи при n=102010.

Задачу решили: 126
всего попыток: 159
Задача опубликована: 20.12.10 12:00
Прислала: Marishka24 img
Источник: Всеукраинская олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

Пусть n — натуральное число, а S(n) — сумма цифр числа n. Сколько решений имеет уравнение n+S2(n)=2011?

Задачу решили: 129
всего попыток: 175
Задача опубликована: 21.12.10 08:00
Прислал: Busy_Beaver img
Источник: Мексиканская олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Найдите остаток от деления числа 11+1111+111111+...+11111111111111111111 на 100. (В последнем числе 10 единиц в основании степени и 10 — в показателе.)

Задачу решили: 98
всего попыток: 212
Задача опубликована: 24.12.10 12:00
Прислала: KATEHbKA img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Найдите наибольшее n, для которого число 3·33·333·...·33...3 (в десятичной записи последнего множителя ровно 2010 троек) делится на 3n.

Задачу решили: 102
всего попыток: 288
Задача опубликована: 27.12.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Сколько существует натуральных чисел, делящихся нацело на 210 и имеющих ровно 210 различных натуральных делителей?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.