img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 163
всего попыток: 214
Задача опубликована: 09.06.09 01:22
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

Среди участников шахматного турнира юношей было в 7 раз больше, чем девушек, и они вместе набрали в 3 раза больше очков, чем все девушки. Сколько девушек участвовали в турнире? (Турнир проводился по круговой системе: каждый играл с каждым по две партии — одну белыми, а другую чёрными; за выигрыш партии участник получал одно очко, за ничью — 1/2 очка, за проигрыш — 0.)

Задачу решили: 160
всего попыток: 618
Задача опубликована: 17.06.09 00:30
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: an_na

Сначала первая труба наполняла бассейн ровно половину времени, необходимого двум другим трубам, чтобы полностью его наполнить. Потом вторая труба наполняла бассейн ровно половину времени, необходимого двум другим трубам, чтобы полностью его наполнить. Наконец, третья труба наполняла бассейн ровно половину времени, необходимого двум другим трубам, чтобы полностью его наполнить. В результате бассейн оказался наполненным за 2 часа. За сколько минут все три трубы наполняют бассейн, если работают одновременно?

Задачу решили: 228
всего попыток: 410
Задача опубликована: 21.06.09 23:21
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: John (Евгений Ларьков)

Найдите трёхзначное число, имеющее наибольшее число различных делителей.

Задачу решили: 269
всего попыток: 324
Задача опубликована: 23.06.09 18:15
Прислал: demiurgos img
Источник: Ж.Арсак "Программирование игр и головоломок"
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: fedyakov

В качестве первого члена последовательности возьмём любое натуральное число, кратное трём. Все остальные её члены получаются по правилу: каждое следующее число равно сумме кубов всех цифр предыдущего. Оказывается, что в любой такой последовательности рано или поздно появляется некое число, которое уже не меняется. Найдите это число.

Задачу решили: 244
всего попыток: 281
Задача опубликована: 26.06.09 13:51
Прислала: xyz img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: lexa (Алексей Голубинцев)

Найти все трёхзначные числа, равные сумме факториалов своих цифр (k! — читается "k факториал" — это произведение всех натуральных чисел от 1 до k). В ответе укажите сумму всех найденных чисел.

Задачу решили: 421
всего попыток: 655
Задача опубликована: 30.06.09 18:59
Прислал: Rep img
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: burilshik (Максим Логинов)

В ряд выписаны числа:  1,  2,  3,  4,  5,  6.  За один ход разрешается либо прибавить к любым двум числам по единице, либо отнять от любых двух чисел по единице. За какое минимальное число ходов можно получить строку из одних пятёрок?  Если Вы считаете, что это невозможно, то введите 0.

Задачу решили: 178
всего попыток: 391
Задача опубликована: 08.07.09 00:31
Прислал: Rep img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Сколькими нулями оканчивается число (20092)! (n! - это произведение всех натуральных чисел от 1 до n). Ответ "много" - не засчитывается!

Задачу решили: 147
всего попыток: 205
Задача опубликована: 08.07.09 00:31
Прислал: demiurgos img
Источник: А.К.Толпыго "1000 задач"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: uchilka725 (Оксана Урусова)

Найти максимальное целое число, которое нельзя представить как сумму двух взаимно простых целых чисел, больших 1.

Задачу решили: 277
всего попыток: 480
Задача опубликована: 25.07.09 00:36
Прислал: Rep img
Источник: "Квант для младших школьников"
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: casper

Какое наибольшее количество месяцев одного года могут иметь по 5 пятниц?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.