img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 66
всего попыток: 72
Задача опубликована: 08.01.10 21:54
Прислал: demiurgos img
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Можно ли представить произвольное натуральное число в виде выражения, содержащего лишь три двойки и произвольные математические знаки? Т.е. допускается сколько угодно складывать, вычитать, менять знак, умножать, делить, возводить в степень, извлекать корни, логарифмировать, вычислять синусы и арксинусы, косинусы и арккосинусы, тангенсы и арктангенсы, но все числа в выражении должны быть записаны в десятичной записи с помощью лишь трёх двоек.

+ 55
  
Задачу решили: 129
всего попыток: 185
Задача опубликована: 19.01.10 10:19
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Найдите сумму тангенсов всех углов треугольника при условии, что все три тангенса — целые числа.

Задачу решили: 123
всего попыток: 168
Задача опубликована: 20.01.10 22:56
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: xyz (Анна Андреева)

Вычислите x2/(y+z)+y2/(x+z)+z2/(x+y), если x/(y+z)+y/(x+z)+z/(x+y)=1.

Задачу решили: 48
всего попыток: 70
Задача опубликована: 25.01.10 16:03
Прислал: demiurgos img
Источник: А.В.Жуков, П.И.Самовол, М.В.Аппельбаум "Элега...
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Найдите два таких иррациональных числа a и b, что число ab является рациональным. (Числа надо указать конкретно; требуется также доказать их иррациональность, но обязательно оставаясь в рамках школьной программы — пользоваться сложными теоремами теории чисел, подобными седьмой проблеме Гильберта или трансцендентности e, нельзя!)

Задачу решили: 137
всего попыток: 191
Задача опубликована: 28.01.10 01:06
Прислал: Father img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Представить сумму 1/(22−1)+1/(42−1)+1/(62−1)+1/(82−1)+...+1/(20102−1) в виде несократимой дроби. В ответе указать сумму числителя и знаменателя.

Задачу решили: 182
всего попыток: 229
Задача опубликована: 31.03.10 08:00
Прислала: fanat img
Источник: мат. бои г.Новосибирска
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Собранный мёд заполняет несколько 50-литровых бидонов. Если его разлить в 40-литровые бидоны, то понадобится на 5 бидонов больше, и один из них останется неполным. Если собранный мёд разлить в 70-литровые бидоны, то понадобится на 4 бидона меньше, и один из них тоже останется неполным. Сколько 50-литровых бидонов заполняет собранный мёд?

Задачу решили: 104
всего попыток: 214
Задача опубликована: 05.04.10 08:00
Прислал: demiurgos img
Источник: Н.Б.Васильев, В.Л.Гутенмахер, Ж.М.Раббот, А.Л...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Anton_Lunyov

На доске в строчку выписаны пять неотрицательных целых чисел A, B, C, D и E, сумма которых равна 2010. Найдите наибольшее значение суммы AB+BC+CD+DE попарных произведений соседних чисел.

Задачу решили: 109
всего попыток: 316
Задача опубликована: 05.05.10 08:00
Прислала: IrineK img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Две лягушки, большая и маленькая, прыгают по дорожке. Сначала они находятся рядом и первый прыжок совершают одновременно. Затем маленькая лягушка прыгает на 5 см каждую секунду, а большая — на 20 см каждые 3 секунды, но зато после каждого третьего прыжка отдыхает лишние 6 секунд, т.е. два своих следующих прыжка она пропускает. В результате маленькая лягушка то обгоняет большую, то отстаёт от нее. После скольких (своих) прыжков маленькая лягушка опередит большую так, что большая лягушка её больше не нагонит? (Считайте, что все прыжки совершаются почти мгновенно.)

Задачу решили: 60
всего попыток: 99
Задача опубликована: 21.05.10 08:00
Прислал: andervish img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Про 4 действительных числа a1, a2, b1 и b2 известно, что (a1+b1)/(1+a1b1)=2005, (a2+b1)/(1+a2b1)=4015 и (a1+b2)/(1+a1b2)=1337. Найдите максимальное значение выражения (a2+b2)/(1+a2b2).

Задачу решили: 125
всего попыток: 355
Задача опубликована: 11.06.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Решите неравенство

.

В ответе укажите число его целых решений.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.