img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 132
всего попыток: 232
Задача опубликована: 02.08.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: marafon (Игорь Пущин)

Из деревни Каспениада в другие деревни можно попасть двумя способами:
• Выйти сразу и идти пешком.
• Вызвать такси, которое придётся подождать определённое время.
В каждом случае используется способ передвижения,
требующий меньшего времени. При этом оказывается, что
если конечный пункт отстоит от Каспениады на 1 км то на дорогу понабится 10 мин, если на 2 км, то 15 мин, а если 3 км, то 17,5 мин. Скорости пешехода и такси, а также время его ожидания принимаются неизменными. Сколько минут уйдёт на дорогу до деревни, отстоящей от Каспениады на 10 км?

Задачу решили: 126
всего попыток: 268
Задача опубликована: 13.08.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: bbny

Сколько существует таких целых чисел a, что уравнение x2+ax+2010=0 имеет целый корень?

Задачу решили: 118
всего попыток: 300
Задача опубликована: 23.08.10 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Alexandroppolu... (Александр Икс)

На какое наименьшее количество частей нужно разрезать прямоугольник 25×36, чтобы из них можно было сложить квадрат? (Нужно использовать все части без наложений и пустот.)

Задачу решили: 105
всего попыток: 119
Задача опубликована: 08.09.10 08:00
Прислал: PLATON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

В некотором механизме три шестерёнки различных диаметров связаны между собой так, что самая большая из них касается двух других, причём на всех трёх шестерёнках вместе имеется 60 зубцов. Когда самая большая шестерня к полным четырём оборотам не доходит на 20 зубцов, две другие делают 5 и 10 полных оборотов. Сколько зубцов на каждой шестерёнке? (В ответе введите произведение трёх найденных чисел.)

Задачу решили: 65
всего попыток: 99
Задача опубликована: 08.11.10 08:00
Прислала: Marishka24 img
Источник: Турнир памяти А.П.Савина
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Сколько существует различных троек простых чисел таких, что произведение любых двух из них при делении на третье даёт в остатке 1? (Тройки, полученные друг из друга перестановками, считаются одинаковыми.)

Задачу решили: 41
всего попыток: 50
Задача опубликована: 08.11.10 12:00
Прислал: COKPAT img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

Найти максимальное число x такое, что при любой раскраске в два цвета квадрата со стороной 1 в нём обязательно найдётся отрезок с одноцветными вершинами длины не меньше, чем x.

Задачу решили: 122
всего попыток: 240
Задача опубликована: 15.11.10 08:00
Прислал: Busy_Beaver img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: casper

Сколько решений имеет уравнение x2−8[x]+7=0, где [x] —целая часть числа x?

Задачу решили: 145
всего попыток: 168
Задача опубликована: 17.11.10 12:00
Прислала: Marishka24 img
Источник: Челябинский турнир матбоёв
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

На гипотенузе AB прямоугольного треугольника ABC взяты две точки M и N так, что AC=AM, BC=BN. Сколько градусов составляет величина угла MCN?

Задачу решили: 112
всего попыток: 150
Задача опубликована: 29.11.10 12:00
Прислал: Rep img
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Найдите остаток от деления числа (2010!)2011 на 2011 (n! означает произведение всех натуральных чисел от 1 до n).

Задачу решили: 66
всего попыток: 434
Задача опубликована: 01.12.10 08:00
Прислала: Marishka24 img
Источник: "Квант"
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: casper

Участников математической олимпиады пересчитали и спросили, кто поедет в воскресенье на экскурсию. Каждый участник сделал следующее заявление: "Я поеду, если всего поедет не менее n2/N и не более n участников олимпиады, где n — мой номер, а N — общее число участников олимпиады". Какое наибольшее число участников смогут поехать на экскурсию, если N=125?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.