img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 37
всего попыток: 51
Задача опубликована: 05.04.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Сколькими способами можно разменять 1 рубль, имея монеты 1, 2, 10, 20 и 50 копеек?

Задачу решили: 34
всего попыток: 55
Задача опубликована: 07.04.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Сколько раз за последние 400 лет по григорианскому календарю 1 января выпадало на воскресенье?

Задачу решили: 27
всего попыток: 30
Задача опубликована: 02.05.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Имеется 14 кубиков: два кубика с числом 1, два кубика с числом 2, два кубика с числом 3 и так далее, два кубика с числом 7. Расположите эти кубики в ряд так, чтобы между кубиками с числом 1 был ровно 1 кубик, между кубиками с числом 2 было ровно 2 кубика, и так далее, между кубиками с числом 7 было ровно 7 кубиков. Построенное решение определяет 14-значное число, записанное цифрами от 1 до 7. Поскольку кубики можно расставить несколькими способами, то в ответе укажите наименьшее 14-значное число, соответствующее полученному решению.

14 кубиков - 23421314

Для примера, на рисунке показано решение для 8 кубиков с числами от 1 до 4 и число 23421314, соответствующее этому решению.

Задачу решили: 24
всего попыток: 78
Задача опубликована: 18.05.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Найдите в порядке возрастания 2020-е число среди всех натуральных чисел, сумма цифр которых равна 2020.

Задачу решили: 27
всего попыток: 38
Задача опубликована: 23.12.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

В алфавите из n букв можно составлять слова в которых стоящие рядом буквы различны и из которых вычеркиванием букв нельзя получить слова вида abab, гда a и b различные. Найдите максимально возможную длину слова. В ответе укажите длину слова для n = 33.

Задачу решили: 26
всего попыток: 61
Задача опубликована: 11.01.21 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

На какое максимальное число непересекающихся областей могут рассечь круг отрезки, соединяющие n точек, лежащих на его окружности? Ответ укахите для n = 12.

Задачу решили: 11
всего попыток: 39
Задача опубликована: 27.01.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Найдите количество решений в целых числах уравнения:
x/(y + z) + y/(z + x) + z/(x + y) = 4
в пределах: 0 ≤ x + y + z ≤ 6000.

Симметричные решения, получаемые одно из другого перестановкой переменных, считать различными.

Задачу решили: 29
всего попыток: 70
Задача опубликована: 26.02.21 08:00
Прислал: admin img
Источник: Венгерская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Однажды на DIOFANT.RU было опубликовано 5 задач. Среди пользователей сайта не оказалось двух, кто решил одни и те же задачи. Если исключить любую задачу, то выбрав любого пользователя, можно найти и другого, решившего из оставшихся четырёх задач те же, что и он. Сколько пользователей решало задачи?

Задачу решили: 18
всего попыток: 36
Задача опубликована: 26.03.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Сколько существует квадратов, вершины которых находятся на узлах точечной сетки 100x2021?

Сколько квадратов?

На рисунке изображён пример квадрата в точечной сетке 5x8.

Задачу решили: 24
всего попыток: 59
Задача опубликована: 01.09.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Sam777e

На рисунке изображены правильный 6-угольник со стороной 7 и ломаная из 14-и звеньев, длины которых составляют арифметическую прогрессию: 1, 2, 3, ... Углы между соседними звеньями – 60°.

Шестиугольник и ломанная - 2

Ломаная – несамопересекающаяся. Она соединяет середины двух противоположных сторон 6-угольника.

Однако, существуют и другие ломаные, обладающие всеми этими свойствами, кроме количество звеньев.

Найдите минимально возможное количество звеньев.

Замечание. Задача кажется очень похожей на задачу № 2215, но на самом деле это не совсем так. Вместе с тем, дальнейшее продолжение "сериала" не планируется.

(Я задумал эти две задачи как забавы ("головоломки") типа разрезания-склеивания. Но zmerch показал очень приличный АЛГОРИТМ их решения, и я решил "поднять их ранг".)
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.