Лента событий:
bbny решил задачу "Удалите цифры" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
10
всего попыток:
21
С помощью равносторонних треугольников нарисованы две «растущие» ёлочки.
Треугольники «вписаны» в угол так, что две вершины каждого треугольника лежат на сторонах угла, а третья вершина лежит на биссектрисе этого угла. Площади первого и второго треугольников снизу соответственно равны 121 и 81. На ёлочке слева каждый следующий треугольник пересекается с предыдущим по треугольнику площади 1, на ёлочке справа каждый следующий треугольник пересекается с предыдущим по треугольнику площади 4. Продолжая многократно такой процесс рисования, убеждаемся, что ёлочки растут. Как высоко они вырастут? В ответе укажите отношение высоты меньшей ёлочки к высоте большей.
Задачу решили:
21
всего попыток:
22
В квадрате ABCD взята точка К так, что угол ВАК=20°, угол КСВ=25°. Найти угол ADK в градусах.
Задачу решили:
20
всего попыток:
27
В равнобедренном прямоугольном треугольнике АВС (С-прямой угол) из вершины острого угла В проведена медиана ВD. Из вершины прямого угла С проведен перпендикуляр на медиану, который пересекает гипотенузу АВ в точке Е. Найти наименьшее значение длины отрезка ВЕ, при условие, что |BE| и SABC - целые.
Задачу решили:
15
всего попыток:
18
Какое наименьшее количество перегибов нужно сделать, чтобы разделить бумажный квадрат на 2 части с площадями в отношении 1:2, не имея ничего, кроме самого квадрата?
Задачу решили:
10
всего попыток:
12
Найдите сумму натуральных чисел m (2 ≤ m ≤ 40) таких, что за конечное число сгибов бумажного квадрата можно получить 1/m его площади.
Задачу решили:
20
всего попыток:
25
В прямоугольнике ABCD проведена диагональ АС. Из вершины В на АС проведена высота ВЕ. В треугольнике АВЕ биссектриса BF делит АЕ на отрезки AF и FE. Найти площадь прямоугольника, если |АВ|=20, |AF|=8.
Задачу решили:
19
всего попыток:
21
На сторонах BC и AD квадрата ABCD расположены точки E и F соответственно так, что при перегибе по отрезку EF вершина С окажется в середине АВ. Какую часть площади квадрата занимает трапеция ECDF?
Задачу решили:
18
всего попыток:
24
Внутри правильного треугольника АВС расположена точка К так, что |АК|=38, |ВК|=39. Найти расстояние от точки К до вершины С при наибольшем приближении площади треугольника целочисленному значению 2026. В ответе указать искомое расстояние в виде десятичного числа с округлением до третьего знака после запятой.
Задачу решили:
18
всего попыток:
21
Центр каждой стороны квадрата соединён отрезком с одним из концов противоположной стороны, как показано на рисунке.
Квадрат разделился на 9 кусочков. Кроме этих 9-и фигур, другие фигуры получаются объединением нескольких соседних (имеющих общую сторону) кусочков. Сколько всего фигур имеют площадь 1/5 от площади всего квадрата?
Задачу решили:
14
всего попыток:
20
В треугольнике со сторонами 6 и 8 медианы, опущенные на эти стороны перпендикулярны. Найти значение квадрата площади данного треугольника.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|