Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
36
всего попыток:
54
Числа натурального ряда записаны на клетчатой бумаге в форме спирали: в одной из клеток записано число 1, справа от неё в соседней клетке записано число 2, вниз от неё в соседней клетке записано число 3, и так далее, двигаясь по часовой стрелке образуется спираль из натурального ряда. В ней можно выделить концентрические квадратные рамки, центром которых является клетка с числом 1. Найдите сумму чисел в рамке размером 101х101.
Задачу решили:
31
всего попыток:
36
Для действительных x, y, z, t верны соотношения Найдите сумму x+y+z+t.
Задачу решили:
28
всего попыток:
35
В системе уравнений:
Задачу решили:
32
всего попыток:
53
Пусть x, y и z - целые числа и x/(y + z) + y/(z + x) + z/(x + y) = 4. Найдите наименьшее положительное значение x+y+z.
Задачу решили:
31
всего попыток:
52
Два парахода идут по морю с постоянными скоростями по фиксированным направлениям. В 9:00 они, когда они начали свое движение расстояние между ними было 20 км, в 9:35 - 15 км, а в 9:55 - 13 км. Через сколько минут после начала движения расстояние между ними стало минимальным?
Задачу решили:
39
всего попыток:
49
На рисунке представлены графики шести функций, содержащие операцию «целая часть числа» (антье). Графики обозначены латинскими буквами. Ниже приведены формулы этих функций, которые обозначены цифрами. Установите соответствие между графиками функций и их формулами. В ответе запишите шестизначное число, которое получается после замены букв в слове ABCDEF соответствующими им цифрами.
Задачу решили:
30
всего попыток:
49
Найдите минимальное значение a2+b2, где a и b - действительные числа, для которых уравнение x4+ax3+bx2+ax+1=0 имеет по крайней мере один действительный корень.
Задачу решили:
30
всего попыток:
35
Найдите количество непрерывных функций f(x), определенных для всех действительных x и удовлетворяющих уравнения xf(y)+yf(x)=(x+y)f(x)f(y) для произвольных x и y.
Задачу решили:
17
всего попыток:
68
В мусульманском календаре их было 11, в григорианском календаре 13. Каким будет 14-ый год?
Задачу решили:
33
всего попыток:
50
Найдите площадь фигуры, ограниченной кривой: 13x2 + 10xy + 13y2 = 72. Ответ округлите до двух знаков после запятой.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|