Лента событий:  
mda решил задачу "Уравнение в целых числах" (Математика):
            
               
              
              
              
                       
               
           
           
 
                   Пожалуйста, не пишите нам, что вы не можете решить задачу.  
                
                    Если вы не можете ее решить, значит вы не можете ее решить :-) 
                Задачу решили:
                
                    19 
                
             
            
                всего попыток:
                
                    21 
                
             
            
                            
        
 
 В числовом ребусе   
                
            
            
                Задачу решили:
                
                    22 
                
             
            
                всего попыток:
                
                    29 
                
             
            
                            
        Вершины четырехугольника ABCD лежат на параболе y = x2, диагонали AC и BD перпендикулярны. Известны абсциссы трех его вершин: xA = 23, xB = –24, xC = – 25. 
 Найдите абсциссу вершины D этого четырехугольника.  
                
            
            
                Задачу решили:
                
                    22 
                
             
            
                всего попыток:
                
                    53 
                
             
            
                            
        
 
 На полке стоит 9-томник, книги которого пронумерованы в таком порядке: 987654321. За одно перемещение можно взять любые два рядом стоящих тома и поставить их на любое другое место полки, в том числе между двумя другими томами. За какое наименьшее число таких перемещений можно получить натуральное расположение томов 123456789.  
                
            
            
                Задачу решили:
                
                    21 
                
             
            
                всего попыток:
                
                    37 
                
             
            
                            
        
 
 Найти отношение площадей двух параллелограммов (меньшей к большей) с диагоналями 10 и 17, высотой 8.  
                
            
            
                Задачу решили:
                
                    27 
                
             
            
                всего попыток:
                
                    45 
                
             
            
                            
        
 
 В треугольнике АВС угол А=45°, угол В=15°. На продолжении стороны АС в направлении С отмечена точка М, причем |СМ|=2|АС|. Найти угол АМВ в градусах.  
                
            
            
                Задачу решили:
                
                    19 
                
             
            
                всего попыток:
                
                    30 
                
             
            
                            
        Для каждого натурального N>1 определены: Найдите максимальное N, меньшее 12345, для которого g(N) нецело.  
                
            
            
                Задачу решили:
                
                    25 
                
             
            
                всего попыток:
                
                    31 
                
             
            
                            
        Найти сумму всех целых возможных x и y таких, что 2x+3y=z2 (z - тоже целое).  
                
            
            
                Задачу решили:
                
                    19 
                
             
            
                всего попыток:
                
                    24 
                
             
            
                            
        
 
 В числовом ребусе 
  
                
            
            
                Задачу решили:
                
                    12 
                
             
            
                всего попыток:
                
                    14 
                
             
            
                            
        
 
 В целочисленном параллелограмме пересечения биссектрис внутренних углов определяют вершины четырёхугольника, ни одна точка которого не находится вне параллелограмма. Сколько существует таких параллелограммов, если известно, что одна из его сторон равна 135, а углы кратны 9 градусам?  
                
            
            
                Задачу решили:
                
                    18 
                
             
            
                всего попыток:
                
                    25 
                
             
            
                            
        
 
 Внутри прямоугольника построены два пересекающихся треугольника, образующие при пересечении четырехугольник с площадью S. 
 Найдите наименьшее целое S, если a=1, b=2215, c=144, h – целое. 
               Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
            
           
           
           
           
           
 |