img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 61
всего попыток: 143
Задача опубликована: 11.12.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

В 6 узлов клетчатой решетке вбили 6 гвоздей, 4 из которых образуют квадрат 4 на 4, и соединили их замкнутой нитью так, чтобы получился шестиугольник наименьшей возможной площади. Найдите его площадь.

Задачу решили: 58
всего попыток: 208
Задача опубликована: 13.12.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: xxxSERGEYxxx

Нить согнули в три раза, потом снова в три раза, после чего сделали не по сгибам разрез. Два из полученных кусков имеют длину 2 см и 6 см. Какой максимальной могла быть длина нити в сантиметрах.

Задачу решили: 75
всего попыток: 100
Задача опубликована: 16.12.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

В прямоугольном треугольнике ABC угол C = 90°, угол B = 40°. На сторонах AB и BC выбраны такие точки D и E соответственно, что EAD = 5° и ECD = 10°. Найдите угол EDC в градусах.

Задачу решили: 73
всего попыток: 100
Задача опубликована: 27.12.13 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В треугольнике ABC провели биссектрису СD. Прямая, параллельная CD и проходящая и через точку B, пересекает продолжение AC в точке E. Известно, что |AD| = 4, |BD| = 6, |BE| = 15. Найдите |BC|2.

Задачу решили: 61
всего попыток: 95
Задача опубликована: 01.01.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Число 3 можно представить в виде суммы двух и более натуральных чисел таким образом: 1+2, 2+1 и 1+1+1.

Сколько существует таких способов для числа 100?

Задачу решили: 76
всего попыток: 92
Задача опубликована: 08.01.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

На окружности с центром в точке O и радиусом 1 отмечены точки A и B. Хорда AB является диаметром второй окружности, при этом на этой окружности имеется точка C такая, что расстояние OC является максимальным. Найдите квадрат длины хорды AB.

Задачу решили: 50
всего попыток: 85
Задача опубликована: 22.01.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Среди 10-элементных подмножеств множества A ={1, 2, ..., 30} найдите количество тех, в которых разность любых двух элементов не меньше 3.

Задачу решили: 33
всего попыток: 75
Задача опубликована: 24.01.14 08:00
Прислал: georgp img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

У менеджера  10 поручений. Выполнять их надо по одному в день, но в определенном порядке. Поручения занумерованы числами от 1 до 10. На поручения с 1 по 5 наложены ограничения. В первый и шестой день нельзя выполнять первое поручение, во второй  и  седьмой день нельзя выполнять второе поручение и т. д.  в пятый и десятый день нельзя выполнять пятое поручение. 5 поручений с 6 -го по 10 можно выполнять в любой из десяти дней. Hайти количество способов  выполнить  поручения.  

Задачу решили: 30
всего попыток: 44
Задача опубликована: 28.02.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В остроугольном треугольнике ABC высоты BD и CE пересекаются в точке H, точка M --- середина AH. Через точки A и H провели окружность, центр O которой лежит вне треугольника ABC. Окружность пересекается с прямой AC$ в точке P. Известно, что углы MED и APO равны, |AB| = 200, |AD| = 40, |AP| = 96√6. Найдите длину отрезка OP.

Задачу решили: 42
всего попыток: 74
Задача опубликована: 03.03.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Из букв A, B, C, D составляют слова длины 8, так чтобы к каждой букве А справа примыкала буква B, а к каждой букве B слева примыкала буква A, например DABABDAB и DDCCDCCD. Cколько различных слов можно составить?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.