Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
9
всего попыток:
10
Определим f(n) для каждого натурального n как количество прямоугольных треугольников с целыми длинами сторон, одна из которых равна n. Найдите семидесятое (в порядке возрастания) натуральное число n, для которого f(n)=14.
Задачу решили:
7
всего попыток:
15
Определим g(m) как наименьшее натуральное число, которое встречается ровно в m пифагоровых тройках. Например, g(1)=3 и g(2)=5, т.к. числа 1 и 2 не встречаются ни в одной пифагоровой тройке, каждое из чисел 3 и 4 встречается ровно в одной пифагоровой тройке, а число 5 – ровно в двух: Найдите наименьшее натуральное число m, для которого g(m)>12345.
Задачу решили:
11
всего попыток:
16
В выпуклом четырехугольнике с целочисленными сторонами два противоположных угла прямые. Смежные стороны, образующие один из этих углов, равны между собой. Смежные стороны, образующие другой из этих углов, не равны между собой. При этом НОД любых трех неравных между собой сторон равен 1. Найдите минимальное значение площади, которым обладают как минимум два таких неконгруэнтных четырехугольника.
Задачу решили:
22
всего попыток:
37
Найдите наименьший периметр прямоугольного треугольника, все стороны которого – рациональные числа, а площадь равна 5.
Задачу решили:
12
всего попыток:
13
Найти пифагоров треугольник с наименьшим периметром, в который можно вписать две одинаковые окружности с радиусами больше 10, при этом одна окружность касается гипотенузы, катета и чевианы из прямого угла, а другая - гипотенузы, второго катета и той же чевианы. В ответе укажите периметр найденного треугольника.
Задачу решили:
21
всего попыток:
22
Пусть p и q – длины отрезков одной из биссектрис треугольника, получаемые разбиением её точкой пересечения биссектрис (отрезок p примыкает к вершине). Даны соответствующие отношения p:q для трёх биссектрис этого треугольника: 5:4; 7:2 и 2:1. Найдите периметр этого треугольника, если длина одной из его сторон равна 411 и искомый периметр – целое число.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|