img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 69
всего попыток: 88
Задача опубликована: 30.11.12 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Даны две арифметические прогрессии a1, a2… и b1, b2, …. (арифметическая прогрессия — это последовательность, в которой an = an–1+d, где d — некоторое число, единое для всей последовательности). Известно, что a1 = b1, и для каждого номера i остатки от деления ai и bi на i совпадают. Найдите значение выражения a2012- b2012.

Задачу решили: 101
всего попыток: 116
Задача опубликована: 12.12.12 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: leonid (Леонид Шляпочник)

Найдите максимально возможное значение выражения

x/(x2+3)+y/(y2+3), если x>0, y>0, x·y=1, x,y - действительные числа. 

Задачу решили: 67
всего попыток: 101
Задача опубликована: 21.12.12 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Найдите минимальное натуральное число k такое, что при любых натуральных n, значение многочлена P(n)=7·n37+37·n7+4·k·n - делится на 259 без остатка.

Задачу решили: 65
всего попыток: 106
Задача опубликована: 18.01.13 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Для данной функции f(x)=\frac{2013^{2x}}{2013^{2x}+2013}., найдите сумму 

S=\sum\limits_{k=1}^{2013} f(\frac{k}{2013}).

Задачу решили: 68
всего попыток: 91
Задача опубликована: 04.02.13 08:00
Прислал: mckoy img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Решить уравнение

sqrt(1+{2x})=[x2]+2[x]+3

[x] - наибольшее целое число, которое не превышает х. {x}=x-[x]

В ответе указать произведение всех возможных x.

Задачу решили: 61
всего попыток: 105
Задача опубликована: 08.02.13 08:00
Прислал: TALMON img
Источник: Израильский форум математики сайта "Апельсин"...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Hasmik33

Назовём число "зелёным", если его можно представить как сумму последовательных (не меньше двух) натуральных чисел.

Сколько существует не зелёных чисел между 10000 и 100000 включительно?

Задачу решили: 70
всего попыток: 134
Задача опубликована: 04.03.13 08:00
Прислал: Shama img
Источник: Олимпиада Физтех-2013
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

В большую коробку положили 20 коробок поменьше. В некоторые из вложенных коробок положили по 20 еще поменьше. В некоторые из этих опять положили по 20, и т.д. После этого ровно 1000 коробок оказалось с содержимым. Какое наибольшее число коробок при этом может быть пустыми?

Задачу решили: 74
всего попыток: 113
Задача опубликована: 05.04.13 08:00
Прислал: zukk img
Источник: Всероссийская олимпиада по математике
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: bbny

В натуральном числе переставили цифры и получили число B. Известно, что A - B состоит из единиц. Найдите наименьшее возможное количество единиц в разности.

Задачу решили: 77
всего попыток: 149
Задача опубликована: 12.04.13 08:00
Прислал: pvpsaba img
Источник: Грузинская национальная олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: leonid (Леонид Шляпочник)

Найти минимальное значение квадрата выражения: x/y+z/t, если 1≤x≤y≤z≤t≤2013.

Задачу решили: 105
всего попыток: 117
Задача опубликована: 19.04.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2005
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: kot_vi

Известно, что число ababab делится на 217. Найдите сумму возможных значений ab. (Здесь a, b  - десятичные цифры, ababab и ab - числа, составленные из этих цифр.)

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.