Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Это открытая задача
(*?*)
Найдите наименьший положительный корень уравнения: 8x3-6x+1=0. Напишите точный ответ в виде математического выражения без кубических корней.
Задачу решили:
46
всего попыток:
80
Найти целые числа a, b и c такие, что уравнение x5+2x4+ax2+bx+c=0 имеет действительные корни только 1 и -1. В ответе укажите произведение abc.
Задачу решили:
47
всего попыток:
95
Найдите количество всех решений в целых числах уравнения х3+у3+6ху=8, принадлежащих множеству: {|x|<1000, |y|<1000}.
Задачу решили:
38
всего попыток:
44
Три деда примерно одного возраста (разность их возрастов не более 10 лет). Их возрасты – натуральные числа, являющиеся корнями уравнения: x3 - Ax2 + 14838x – C = 0, где A и C - также натуральные числа. Найдите число C.
Задачу решили:
40
всего попыток:
58
Пусть 0 < x ≤ y ≤ z и xy+yz+zx=3. Найти максимум xy3z2.
Задачу решили:
44
всего попыток:
103
Найти количество целочисленных пар (x, y) таких, что 0 ≤ y ≤ 2017 и x2+y2+(x+y)2=y3.
Задачу решили:
42
всего попыток:
71
По окружности радиуса 1 движутся по часовой стрелке три точки со скоростями 1, 2, 3. Они начали движение с одной позиции. Найдите максимальную площадь S треугольника, который они образуют. В качестве ответа укажите ближайшее целое значение 10×S, где S - площадь.
Задачу решили:
22
всего попыток:
27
Числа 1, 2, 3, ..., 2018 разделены на две группы: Для каждого такого разбиения вычисляется сумма |a1-b1|+|a2-b2|+...+|a1009-b1009|. И затем все полученные различные значения сумм для всех возможных разбиений складываются. Какое значение получится?
Задачу решили:
41
всего попыток:
58
Функция f(n) такая, что f(n)=1 при n<0 и f(n)=1-f(n-1)f(n-3)f(n-4) при n≥0. Найдите сумму значений функции от 0 до 2018.
Задачу решили:
57
всего попыток:
75
Между столбами А1 и А2 натянут провод длинной 48 м. Воробей вначале сел в середину А3 провода А1А2, затем прыгнул в середину А4 отрезка А2А3, затем прыгнул в середину А5 отрезка А3А4, и т.д. Прыгая так бесконечно долго, воробей стремится к некоторой точке В. Найдите расстояние А1В.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|