Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
133
всего попыток:
301
В доме 100 этажей. Вася живет на 19-м, а Коля - на 96 этаже. Лифт в доме имеет только 2 кнопки: "+7" (подняться на 7 этажей) и "-9" (опуститься на 9 этажей). Какое минимальное количество раз должен нажать Коля на кнопку "+7", чтобы попасть к Васе на лифте.
Задачу решили:
87
всего попыток:
134
Разложить на множители многочлен n15 +n12+1, указав два его множителя. В ответе записать сумму множителей при n=2.
Задачу решили:
46
всего попыток:
72
Тридцать два натуральных числа от 1 до 32 можно разместить по кругу так, что любые два соседних числа в сумме дают полный квадрат. Записав затем все числа в ряд друг за другом без пробелов, начиная с числа 1, получим 55-значное число. Найдите наибольшее такое число.
Задачу решили:
152
всего попыток:
218
Шины на передних колесах автомобиля стираются (т.е. приходят в негодность) после 30000 км пробега, а на задних - после 60000 км. Водитель нового автомобиля заинтересован в том, чтобы передние и задние колеса прослужили одинаково долго. После скольких километров пробега ему нужно поменять местами передние и задние колеса?
Задачу решили:
89
всего попыток:
134
Найти сумму всех натуральных чисел п, для которых n·2n-1+1 является полным квадратом.
Задачу решили:
172
всего попыток:
198
Найдите целое положительное значение выражения: .
Задачу решили:
80
всего попыток:
93
Будем строить множества из 2012 произвольных действительных чисел так, чтобы сумма любых 777 чисел из этого множества была строго положительна. Какое максимально возможное количество отрицательных чисел может быть в таком множестве?
Задачу решили:
164
всего попыток:
172
Найдите двузначное число n, если известно, что числа 2n+1 и 3n+1 являются полными квадратами.
Задачу решили:
145
всего попыток:
233
Двое A и B играют в карты. Ставка в игре 1 рубль. Когда было сыграно ровно n игр, оказалось, что А выиграл 48 игр, а B выиграл 47 рублей. Чему равно n?
Задачу решили:
97
всего попыток:
128
Натуральные числа от 1 до 1200 разбиты на три группы. Каждое число принадлежит только одной группе. Пусть a, b, c сумма каждой группы, удовлетворяющая условиям a≤ b≤ c. Найти максимум a.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|