Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
71
всего попыток:
91
Диагонали трапеции делят её на четыре треугольника. Площади треугольников, прилегающих к основаниям, равны 50 и 32. Найдите площадь трапеции.
Задачу решили:
46
всего попыток:
59
Пусть a, b, c и d - действительные числа и . Найти d.
Задачу решили:
46
всего попыток:
63
Сторона треугольника равна 53. Растояние от центра окружности, описанной около этого треугольника, до этой стороны равно 37. Чему равна сумма всех возможных значений угла, противоположного этой стороне, в градусах?
Задачу решили:
53
всего попыток:
56
Пусть a, b, c, d > 0 и c2+d2=(a2+b2)3, найти минимум значения a3/c+b3/d.
Задачу решили:
103
всего попыток:
121
На рисунке указаны проценты площадей непересекающихся областей квадратов. Чему равно соотношение сторон квадратов (меньшей к большей)?
Задачу решили:
43
всего попыток:
81
В треугольнике ABC размещен квадрат DEFG так, что вершины D и E являются серединами сторон AB и BC, а точки F и G находятся на стороне AC. Найдите максимально возможный острый угол между прямыми BF и CD (в градусах).
Задачу решили:
29
всего попыток:
44
Найти сумму всех таких целых чисел b, что уравнение [x2]-2012x+b=0 имеет нечетное число корней, [x] - целая часть числа x.
Задачу решили:
41
всего попыток:
68
Найти количество целых неотрицательных решений уравнения [x/n]=[x/(n+1)], n - натуральное, [x] - целая часть x. В ответе укажите количество решений для n = 1000.
Задачу решили:
54
всего попыток:
87
В классе 16 учеников. Каждый месяц учитель делит класс на две группы. Какое наименьшее количество месяцев должно пройти, чтобы любые два ученика в какой-то из месяцев оказались в разных группах?
Задачу решили:
65
всего попыток:
75
Все 5 представленных на рисунке прямоугольников, включая объединяющий, подобны. Найти отношения площадей А и В.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|