Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
22
всего попыток:
35
Две окружности с радиусами R1, R2 расположены так, что длина отрезка между центрами равна R1+R2+d (d-расстояние между окружностями). Найти наименьшее целочисленное значение длины отрезка внутренней касательной, если известно, что d, R1, R2 - последовательные натуральные числа.
Задачу решили:
11
всего попыток:
12
Действительные отличные от нуля числа x, y таковы, что
Задачу решили:
22
всего попыток:
28
Внутри эллипса находятся три окружности. Центр первой окружности совпадает с центром эллипса и эта окружность имеет с эллипсом две точки касания. Центры двух других окружностей совпадают с фокусами эллипса и каждая из них имеет одну точку касания с эллипсом и одну точку касания с первой окружностью. Найдите отношение полуосей эллипса (меньшей к большей).
Задачу решили:
22
всего попыток:
23
В ромб вписана окружность, которая делит его большую диагональ на три части в отношении 1:3:1. В каком отношении эта окружность делит меньшую диагональ ромба? Если искомое отношение n:m:n, то в ответе запишите трехзначное число nmn.
Задачу решили:
21
всего попыток:
23
Группа из 5 слонов и 7 бегемотов съела 11 круглых и 20 кубических арбузов, а группа из 8 слонов и 4 бегемотов съела 20 круглых и 8 кубических арбузов. Причем один их видов животных оказался привередлив и ел арбузы только одной формы. Известно, что слоны съедали поровну целое количество арбузов и бегемоты также поровну целое количество арбузов. Круглые и кубические арбузы имеют одинаковый вес. Какой вид животных привередливый, какой формы предпочитает арбуз и сколько штук съедает его одна особа? Для введения ответа введем обозначения цифрами: слон-1, бегемот-2. Круглый арбуз-1, кубический арбуз-2. К примеру ответ 213 означает бегемот съедает 3 круглых арбуза.
Задачу решили:
17
всего попыток:
23
В трапеции с целочисленными основаниями проведены три параллельных целочисленных отрезка: 1) через точку пересечения диагоналей. 2) средняя линия трапеции. 3) отрезок деления данной трапеции на две равновеликие трапеции. Найти наименьшую сумму длин всех пяти отрезков, включая основания данной трапеции.
Задачу решили:
11
всего попыток:
17
4 параллельных прямых расположены на плоскости одна за другой на одинаковых растояниях. 4 других параллельных прямых, не параллельных предыдущим прямым, также расположены на той же плоскости одна за другой на одинаковых растояниях. Наконец, третья группа 4-х параллельных прямых, не параллельных предыдущим, тоже расположены на той же плоскости одна за другой на одинаковых растояниях. Эти 12 прямых делят плоскость на n областей. Найдите сумму всех возможных значений n.
Задачу решили:
22
всего попыток:
23
Для какого наибольшего натурального числа N в десятичной записи каждого из чисел N, 2N, 3N, …, N² последняя цифра не равна предпоследней?
Задачу решили:
23
всего попыток:
23
Фальшивомонетчик напечатал купюры достоинством 43, 57 и 70 рублей, поровну каждого вида. Когда он потратил менее пяти купюр, у него осталось всего 20172 рубля. Сколько он потратил денег?
Задачу решили:
21
всего попыток:
23
В описанной трапеции ABCD (AD и ВС - основания) |АВ|=21, |ВС|=9, |CD|=24. Найти длину хорды вписанной окружности, образованной диагональю АС.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|