Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
29
всего попыток:
34
Радиусы двух концентрических окружностей относятся как 1:2. Хорда большей окружности делится меньшей окружностью на три равные части. Найдите квадрат отношения этой хорды к диаметру большей окружности.
Задачу решили:
27
всего попыток:
30
На доске записано 21 последовательных натуральных чисел. После вычеркивания одного из чисел и сложения оставшиеся 20 чисел получили 2023. Какое число вычеркнули?
Задачу решили:
22
всего попыток:
23
Про четырехугольник ABCD известно следующее: угол DAB равен 150°, cумма углов DAC и ABD равна 120°, разность углов DBC и ABD равна 60°. Найти угол BDC в градусах.
Задачу решили:
25
всего попыток:
63
Сколько целых значений может иметь длина биссектрисы AD треугольника ABC, если |AB|=45 и |AC|=29 ?
Задачу решили:
24
всего попыток:
29
Запись натурального числа начинается с цифры «3». Если эту цифру перенести в конец записи, то число уменьшится втрое. Найдите наименьшее такое число.
Задачу решили:
22
всего попыток:
25
У прямоугольного листа ABCD угол BAD загибается так, что его вершина А попадает на сторону листа ВС. При этом получаются три прямоугольных треугольника, площади которых образуют арифметическую прогрессию. Если площадь наименьшего из треугольников равна 3, то чему равна площадь наибольшего из них? Ответ округлите до двух знаков после запятой.
Задачу решили:
29
всего попыток:
37
Два парома ходят между двумя противоположными берегами реки с постоянными скоростями. Достигнув берега, каждый из них тут же начинает двигаться в обратном направлении. Паромы отчалили от противопложных берегов одновременно, встретились впервые в 700 метрах от одного из берегов, поплыли дальше каждый к соответствующему берегу, затем повернули назад и вновь встретились в 400 метрах от другого берега. Определите ширину реки в метрах.
Задачу решили:
24
всего попыток:
31
При сгибе прямоугольного листа бумаги с целочисленными сторонами, одна из которой равна 7, были совмещены две противоположные вершины. Найти длину линии сгиба при условии равенства её рациональному числу.
Задачу решили:
26
всего попыток:
28
На сторонах прямоугольного треугольника с гипотенузой, равной 13 и с суммой длин катетов, равной 15 построили во внешнюю сторону квадраты. Найти площадь шестиугольника, вершины которого являются вершинами квадратов, не связанных с треугольником.
Задачу решили:
28
всего попыток:
29
Трое зашли в кафе. Один купил 4 сандвича, чашку кофе и 10 пончиков за 1 доллар 69 центов, второй купил 3 сандвича, чашку кофе и 7 пончиков за 1 доллар 26 центов. Сколько центов заплатил третий за сандвич, чашку кофе и пончик?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|