Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
41
всего попыток:
45
Найти сумму всех α таких, что существует функция f: R → R, отличная от константы, такая, что f(α(x + y)) = f(x) + f(y) ?
Задачу решили:
33
всего попыток:
46
Пусть f(x) = x2 + ax + bcos(x). Найдите количество целых значений параметров a, при которых уравнения f(x) = 0 и f(f(x)) = 0 имеют совпадающие непустые множества действительных корней.
Задачу решили:
61
всего попыток:
87
Отец с двумя сыновьями отправились навестить бабушку, которая живет в 33 км от города. У отца есть мотороллер, скорость которого 25 км/ч, а с пассажиром — 20 км/ч (двух пассажиров на мотороллере перевозить нельзя). Каждый из братьев идет по дороге со скоростью 5 км/ч. За какое минимальное количество минут все трое доберутся до бабушки?
Задачу решили:
42
всего попыток:
66
Имеется 40 одинаковых газовых баллонов, значения давления газа в которых нам неизвестны и могут бытьра зличны. Разрешается соединятьлю бые баллоны друг с другом в количестве, не превосходящем заданного натурального числа k, а затем разъединять их; при этом давление газа в соединяемых баллонах устанавливается равным среднему арифметическому давлений в них до соединения. При каком наименьшем k существует способ уравнивания давлений во всех 40 баллонах независимо от первоначального распределения давлений в баллонах?
Задачу решили:
44
всего попыток:
56
Путь от платформы A до платформы B электропоезд прошел за X минут (0 < X < 60). Найдите X, если известно, что как в момент отправления от A, так и в момент прибытия в B угол между часовой и минутной стрелками равнялся X градусам.
Задачу решили:
39
всего попыток:
56
Найдите все такие пары (x, y) натуральных чисел, что x + y = an, x2 + y2 = am для некоторых натуральных a, n, m. В ответе укажите количество таких пар, в которых оба числа меньше 100.
Задачу решили:
41
всего попыток:
48
Найдите количество пар (a, b) натуральных чисел таких, что при любом натуральном n число an + bn является точной (n+1)-й степенью.
Задачу решили:
36
всего попыток:
53
Известно, что существует число S, такое, что если a+b+c+d=S и 1/a+1/b+1/c+1/d=S (a, b, c, d отличны от нуля и единицы), то 1/(a−1)+1/(b−1)+1/(c−1)+1/(d−1)=S. Найти S2.
Задачу решили:
40
всего попыток:
51
Найти сумму натуральных чисел на которые можно сократить дробь (3m − n)/(5n + 2m), если известно, что она сократима и что числа m и n взаимно просты.
Задачу решили:
74
всего попыток:
80
Найти x+y, если известно, что (x+(x2+1)1/2)(y+(y2+1)1/2)=1
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|