img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 126
всего попыток: 189
Задача опубликована: 23.01.13 08:00
Прислал: admin img
Источник: Олимпиада имени Леонарда Эйлера
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Из квадрата вырезали меньший квадрат, одна из сторон которого лежит на стороне исходного квадрата. Периметр полученного восьмиугольника на 40% больше периметра исходного квадрата. На сколько процентов его площадь меньше площади исходного квадрата?

Задачу решили: 66
всего попыток: 95
Задача опубликована: 30.01.13 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Freeplay (Арсений Кузнецов)

112.jpg

На окружности с центром в т.O выбраны точки A и B так, что угол AOB=90°. На бОльшей дуге AB произвольным образом выбрана точка С (будем считать, что B и С лежат по одну сторону от прямой AO) через которую проведена касательная к нашей окружности. Из точек A и B проведены перпендикуляры к  этой касательной, пересекающие ее в точках D и E соответственно. Причем оказалось, что |AD|=686, а |BE|=252. Найдите радиус окружности |AO|.

Задачу решили: 110
всего попыток: 133
Задача опубликована: 13.03.13 08:00
Прислал: nauru img
Источник: Уральский Турнир Юных математиков 2012
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: azat

Дан треугольник ABC, где ?BAC = 60?. Точка S — середина биссектрисы AD. Известно, что ?SBA = 30?. Найдите DC/BS.

Задачу решили: 30
всего попыток: 380
Задача опубликована: 25.03.13 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Angelina

Известно, что радиус вписанной в треугольнике окружности равен 6, а радиус описанной около него окружности равен 65/3.
Сколько целых значений может принимать площадь этого треугольника?

Задачу решили: 91
всего попыток: 109
Задача опубликована: 01.04.13 08:00
Прислал: levvol img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Дан треугольник АВС, у которого сторона |BC|=3. На стороне BC отложена точка D, так, что |BD|=2.  Чему равно значение |AB|2+2 |AC|2-3 |AD|2?

Задачу решили: 66
всего попыток: 141
Задача опубликована: 08.04.13 08:00
Прислал: zmerch img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

В выпуклом четырёхугольнике ABCD углы ABC, BCD, DBC и ACD равны 990, 360, 810 и 90 соответственно. Найдите величину угла DAC в градусах.

Задачу решили: 40
всего попыток: 48
Задача опубликована: 10.06.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 1 img
баллы: 100

Пусть A — конечное множество точек плоскости, каждая из которых покрашена в черный или белый цвет. Множество A называется неразделимым, если для любой прямой l, не содержащей точек A, найдутся точки разного цвета по одну сторону от l. Пусть M — неразделимое множество, никакие три точки которого не лежат на одной прямой. Найдите разность между количеством неразделимых подмножеств М с четным числом точек и количеством неразделимых подмножеств М с нечетным числом точек.

Задачу решили: 49
всего попыток: 66
Задача опубликована: 08.07.13 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

2013 окружностей на плоскости проведены так, что любые две из
них пересекаются в двух точках, но никакие три окружности не пересекаются в одной точке. На сколько частей делят плоскость эти окружности?

Задачу решили: 52
всего попыток: 109
Задача опубликована: 18.09.13 08:00
Прислал: putout img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В равнобедренный треугольник ABC с периметром P вписан ромб со стороной a. Одна сторона ромба лежит на основании, другая, смежная, – на боковой стороне треугольника. P и a – целые числа; площади ромба и треугольника относятся друг к другу как 4:9.

Romb_v_treugolnike.jpg

Найдите такое значение a, при котором |P-100| минимально. В качестве ответа укажите сумму периметра ΔABC и стороны ромба (P+a).

Задачу решили: 79
всего попыток: 88
Задача опубликована: 07.10.13 08:00
Прислал: BestBaba img
Источник: Андреев, Шувалова
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Oleg2013

Дан треугольник ABC со сторонами |AB|=13; |AC|=21, |BC|=16. На сторонах AB и AC построены равносторонние треугольники ABM и ACN, как это показано на рисунке. Вычислить расстояние между точками M и N.

BB.JPG

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.