Закрыть
Задачу "[[name]]" решило [[solved]] человек(а).
Вы решили задачу
и добавили [[value]] баллов к своей силе.
но задача по силе не входит в топ 100 решенных вами задач.
Вы не решили задачу.
За решение задачи можете добавить [[future]] баллов к силе.
[[formula]]
Сила пересчитывается один раз в сутки.
Сила задачи высчитывается по формуле:
F=(B-D)/(1+[S/10]),
-
B - количество баллов за задачу, по умолчанию 100
-
D - штраф за попытку, по умолчанию 5
-
S - количество решивших данную задачу
Сила конкретного пользователя считается по
100 решенным задачам с максимальным значением силы.
|
Задачи: Математика
|
|
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
3
Задачу решили:
18
всего попыток:
24
Задача опубликована:
25.12.23 08:00
Источник:
Под влиянием Задачи 2561
Вес:
1
сложность:
1
баллы: 100
|
Вася предложил задачку брату Ване, располагая 10 карточек в ряд с цифрами 1234567890:
"Учитывая очевидную делимость 1234567890//9, докажи существование делимости на 99 нового числа, переставляя две карточки с некими цифрами Х,У: цифру Х на место У, а У на место Х (вот число 1254367890 как перестановка "тройки" и "пятёрки"), и при этом пусть сумма Х+У = М - наибольшая."
Вместо решения Ваня добавил:
"Здесь обнаруживается задачка посложнее! Выбрать две пары соседних карточек и в каждой паре соседние поменять местами (например, карточки с цифрами Х и Х+1 дадут новую пару соседних Х+1 и Х), и в итоге получить новое число с такой же делимостью на 99. И при всём при этом, пусть эти две пары дадут максимальную сумму N всех четырёх цифр!"
Однако Вася возразил брату:
"Я уже и сам догадывался до твоей задачки, а пока ты формулировал её, я придумал задачку ещё сложнее твоей! - Переставляя две карточки с некими цифрами А,В (А на место В, а В на А) и при этом с наибольшей разницей Р=|A-B|, получить делимость нового числа на 9*9 = 81. Вот так!"
Какая же сумма M+N+Р получилась у братьев?
7
Задачу решили:
19
всего попыток:
21
Задача опубликована:
29.12.23 08:00
Вес:
1
сложность:
1
баллы: 100
|
Лучшее решение:
TALMON
(Тальмон Сильвер)
|
Даны некие натуральные числа 1<p<n, где р - наименьший делитель числа n (n//р), и при этом m = 2+р2 - наибольший собственный делитель: n//m. Найдите сумму всех таких n.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.