Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
130
всего попыток:
147
Найдите такое наименьшее натуральное число N, что N/2 — квадрат натурального числа, N/3 — куб натурального числа, а N/5 — пятая степень натурального числа.
Задачу решили:
80
всего попыток:
93
Будем строить множества из 2012 произвольных действительных чисел так, чтобы сумма любых 777 чисел из этого множества была строго положительна. Какое максимально возможное количество отрицательных чисел может быть в таком множестве?
Задачу решили:
101
всего попыток:
116
Найдите максимально возможное значение выражения x/(x2+3)+y/(y2+3), если x>0, y>0, x·y=1, x,y - действительные числа.
Задачу решили:
33
всего попыток:
63
Для двух натуральных x и k, рассмотрим два числа: x и (x+k). Определим функцию f(k)=i, где i - количество таких чисел xi, что и xi, и xi+k являются точными квадратами некоторых натуральных чисел. Например f(1)=0; f(3)=1 {x=1}; f(21)=2 {x1=4, x2=100} и т.д. В интервале 1<k<212 найдите все такие k, что f(k)=15. В ответе необходимо указать сумму всех таких k.
Задачу решили:
67
всего попыток:
101
Найдите минимальное натуральное число k такое, что при любых натуральных n, значение многочлена P(n)=7·n37+37·n7+4·k·n - делится на 259 без остатка.
Задачу решили:
65
всего попыток:
106
Для данной функции , найдите сумму .
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|