Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
34
всего попыток:
47
Обезьянке, у которой не было ни одного кокоса, вечером подарили волшебное дерево. С дерева каждый день рано утром падает один кокос. На рынке в середине дня можно купить новое точно такое же дерево - оно стоит 12 кокосов. Уже на следующий день рано утром новое дерево даст первый кокос. Обезьянка хочет накопить 48 кокосов, и она придумала способ, как сделать это за наименьшее число дней. На какой по счёту день обезьянка накопит не меньше 48 кокосов? Замечание: Первым считаем день, когда обезьянке подарили дерево (а первый кокос появился у обезьянки на второй день). Продавать деревья нельзя.
Задачу решили:
33
всего попыток:
34
Найдите натуральное число, равное целой части произведения двухсот и арксинуса разности двух его некоторых цифр.
Задачу решили:
41
всего попыток:
46
В числовом ребусе МЯУ*МЯУ=КОШКА одинаковым буквам соответствуют одинаковые цифры, разным – разные, звёздочки – знаки умножения. Чему равно значение КОШКА?
Задачу решили:
30
всего попыток:
37
У Кости было 26 одинаковых на вид монет, среди них 21 – настоящие, которые весят поровну, и 5 – фальшивые, которые тоже весят поровну, но несколько легче. Все вместе они весили 421 г. Костя потерял 5 монет, и теперь оставшиеся весят только 340 г. Сколько весит настоящая монета?
Задачу решили:
29
всего попыток:
31
Решите систему уравнений: В качестве ответа введите (x+y)z.
Задачу решили:
56
всего попыток:
56
Бутылка с молоком весит 300 грамм, если отлить половину молока, то она будет весить 200 грамм. Найти вес бутылки.
Задачу решили:
38
всего попыток:
40
Найдите сумму всех n таких, что n(1!+2!+...+n!)=(n+1)!
Задачу решили:
31
всего попыток:
45
В ребусе this + is = easy заменили цифры буквами (одинаковые - одинаковыми, разные - разными). Какое количество решений имеется у ребуса?
Задачу решили:
36
всего попыток:
52
log4(x+2y)+log4(x−2y)=1, найти мининум |x|-|y| для целых x и y.
Задачу решили:
28
всего попыток:
30
Для положительных x, y и z таких, что x2+y2+z2+2xyz=1, найдите максимум xy+yz+zx-2xyz.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|