Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
44
всего попыток:
68
Пусть m и n - натуральные числа такие, что 7m-3n делит m4+n2. Найдите m+n.
Задачу решили:
54
всего попыток:
63
Действительные числа x и y таковы, что x4y5+y4x5=810 и x3y6+y3x6=945. Найдите 2x3+x3y3+2y3.
Задачу решили:
58
всего попыток:
89
Найти сумму всех целых чисел n таких, что n2+n+41 является квадратом целого числа.
Задачу решили:
65
всего попыток:
108
Найти сумму всех целых решений уравнения (x2-3x+1)x+1=1.
Задачу решили:
52
всего попыток:
89
Известно, что . Найти .
Задачу решили:
43
всего попыток:
55
Пусть многочлен P(x)=x3+x2+c, c - действительное число. Пусть I - конечный интервал такой, что P(x) имеет более, чем один действительный корень для всех c принадлежащих I. Найдите длину этого интервала.
Задачу решили:
45
всего попыток:
82
Найдите сумму всех целых значений x и y, удовлетворяющих уравнению x3+(x+1)3+...+(x+7)3=y3.
Задачу решили:
46
всего попыток:
59
Пусть a, b, c и d - действительные числа и . Найти d.
Задачу решили:
53
всего попыток:
56
Пусть a, b, c, d > 0 и c2+d2=(a2+b2)3, найти минимум значения a3/c+b3/d.
Задачу решили:
37
всего попыток:
58
Пусть P(x)=x2016±x2015±...±x±1 многочлен с коэффициентами ±1. Известно, что у него нет действительных корней. Какое максимальное количество коэффициентов -1 у него может быть?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|