Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
48
всего попыток:
53
У нескольких крестьян есть 128 овец. Если у кого-то из них оказывается не менее половины всех овец, остальные сговариваются и раскулачивают его: каждый берет себе столько овец, сколько у него уже есть. Если у двоих по 64 овцы, то раскулачивают кого-то одного из них. Произошло 7 раскулачиваний. Среди крестьян выбирается тот, у кого стало больше всех овец. Сколько у него овец?
Задачу решили:
40
всего попыток:
46
Длины сторон некоторого треугольника и диаметр вписанной в него окружности являются четырьмя натуральными числами и последовательными членами арифметической прогрессии. Максимальная длина стороны треугольника не превосходит 26. Найдите количество всех таких треугольников.
Задачу решили:
39
всего попыток:
68
Из бесконечной шахматной доски вырезали многоугольник со сторонами, идущими по сторонам клеток. Отрезок периметра многоугольника называется черным, если примыкающая к нему изнутри многоугольника клетка — черная, соответственно белым, если клетка белая. Пусть A — количество черных отрезков на периметре, B — количество белых, и пусть многоугольник состоит из 28 черных и 16 белых клеток. Чему равно A-B?
Задачу решили:
35
всего попыток:
43
На сторонах BC, CA, AB треугольника ABC выбраны соответственно точки A1, B1, C1 так, что медианы A1A2, B1B2, C1C2 треугольника A1B1C1 соответственно параллельны прямым AB, BC, CA. Найти отношение длин |A1B|/|CA1|.
Задачу решили:
23
всего попыток:
28
Какое наименьшее число сторон может иметь нечетноугольник (не обязательно выпуклый), который можно разрезать на параллелограммы?
Задачу решили:
43
всего попыток:
51
Среди пяти внешне одинаковых монет 3 настоящие и две фальшивые, одинаковые по весу, но неизвестно, тяжелее или легче настоящих. Как за наименьшее число взвешиваний найти хотя бы одну настоящую монету? В ответе дайте количество взвешиваний.
Задачу решили:
40
всего попыток:
44
Дан параллелограмм ABCD с углом A, равным 60?. Точка O — центр окружности, описанной около треугольника ABD. Прямая AO пересекает биссектрису внешнего угла C в точке K. Найдите отношение OK/AO.
Задачу решили:
34
всего попыток:
47
При каком наименьшем n шахматную доску n×n можно разрезать на квадраты 40×40 и 49×49 так, чтобы квадраты обоих видов присутствовали?
Задачу решили:
34
всего попыток:
57
Даны числа 1, 2,..., N, каждое из которых окрашено либо в черный, либо в белый цвет. Разрешается перекрашиватьв противоположный цвет любые три числа, одно из которых равно полусумме двух других. Найти минимальное N при которо можно сделать все числа белыми?
Задачу решили:
33
всего попыток:
55
N цифр — единицы и двойки — расположены по кругу. Изображенным назовем число, образуемое несколькими цифрами, расположенными подряд (по часовой стрелке или против часовой стрелки). При каком наименьшем значении N все четырехзначные числа, запись которых содержит только цифры 1 и 2, могут оказаться среди изображенных?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|