img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 48
всего попыток: 53
Задача опубликована: 09.03.16 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: snape

У нескольких крестьян есть 128 овец. Если у кого-то из них оказывается не менее половины всех овец, остальные сговариваются и раскулачивают его: каждый берет себе столько овец, сколько у него уже есть. Если у двоих по 64 овцы, то раскулачивают кого-то одного из них. Произошло 7 раскулачиваний. Среди крестьян выбирается тот, у кого стало больше всех овец. Сколько у него овец?

Задачу решили: 40
всего попыток: 46
Задача опубликована: 11.03.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Длины сторон некоторого треугольника и диаметр вписанной в него окружности являются четырьмя натуральными числами и  последовательными членами арифметической прогрессии. Максимальная длина стороны треугольника не превосходит 26. Найдите количество всех таких треугольников.

Задачу решили: 39
всего попыток: 68
Задача опубликована: 16.03.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: Marutand

Из бесконечной шахматной доски вырезали многоугольник со сторонами, идущими по сторонам клеток. Отрезок периметра многоугольника называется черным, если примыкающая к нему изнутри многоугольника клетка — черная, соответственно белым, если клетка белая. Пусть A — количество черных отрезков на периметре, B — количество белых, и пусть многоугольник состоит из 28 черных и 16 белых клеток. Чему равно A-B?

+ 2
  
Задачу решили: 35
всего попыток: 43
Задача опубликована: 23.03.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

На сторонах BC, CA, AB треугольника ABC выбраны соответственно точки A1, B1, C1 так, что медианы A1A2, B1B2, C1C2 треугольника A1B1C1 соответственно параллельны прямым AB, BC, CA. Найти отношение длин |A1B|/|CA1|.

Задачу решили: 23
всего попыток: 28
Задача опубликована: 01.04.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Какое наименьшее число сторон может иметь нечетноугольник (не обязательно выпуклый), который можно разрезать на параллелограммы?

+ 0
+ЗАДАЧА 1349. 5 монет (Л. Емельянов)
  
Задачу решили: 43
всего попыток: 51
Задача опубликована: 11.04.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: georgp

Среди пяти внешне одинаковых монет 3 настоящие и две фальшивые, одинаковые по весу, но неизвестно, тяжелее или легче настоящих. Как за наименьшее число взвешиваний найти хотя бы одну настоящую монету? В ответе дайте количество взвешиваний.

Задачу решили: 40
всего попыток: 44
Задача опубликована: 13.04.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Дан параллелограмм ABCD с углом A, равным 60?. Точка O — центр окружности, описанной около треугольника ABD. Прямая AO пересекает биссектрису внешнего угла C в точке K. Найдите отношение OK/AO.

Задачу решили: 34
всего попыток: 47
Задача опубликована: 15.04.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

При каком наименьшем n шахматную доску n×n можно разрезать на квадраты 40×40 и 49×49 так, чтобы квадраты обоих видов присутствовали?

Задачу решили: 34
всего попыток: 57
Задача опубликована: 20.04.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Даны числа 1, 2,..., N, каждое из которых окрашено либо в черный, либо в белый цвет. Разрешается перекрашиватьв противоположный цвет любые три числа, одно из которых равно полусумме двух других. Найти минимальное N при которо можно сделать все числа белыми?

+ 2
  
Задачу решили: 33
всего попыток: 55
Задача опубликована: 22.04.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: логикаimg

N цифр — единицы и двойки — расположены по кругу. Изображенным назовем число, образуемое несколькими цифрами, расположенными подряд (по часовой стрелке или против часовой стрелки). При каком наименьшем значении N все четырехзначные числа, запись которых содержит только цифры 1 и 2, могут оказаться среди изображенных?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.