Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
40
всего попыток:
51
Найти сумму натуральных чисел на которые можно сократить дробь (3m − n)/(5n + 2m), если известно, что она сократима и что числа m и n взаимно просты.
Задачу решили:
30
всего попыток:
45
В правильном десятиугольнике ABCDEFGHIJ со стороной 1 проведена прямая Q1Q2, так что в треугольнике Q1AQ2: |Q1A|+|AQ2|=1. Найдите сумму всех углов в градусах, под которыми виден отрезок Q1Q2 из всех вершин за исключением вершины A.
Задачу решили:
58
всего попыток:
63
Пятиугольник ABCDE делится отрезком BD на ромб ABDE и равносторонний треугольник BCD. Чему равен угол ACE (в градусах)?
Задачу решили:
46
всего попыток:
61
В таблицу размера 37 на 37 вписаны все числа от 1 до 37, так что каждое из них встречается по 37 раз. При этом сумма чисел над главной диагональю в 3 раза больше суммы чисел под ней. Найдите число, которое записано в центральной ячейке.
Задачу решили:
46
всего попыток:
54
Натуральное число N имеет M делителей, а M - N/2 делителей. Сколько делителей имет N+2M?
Задачу решили:
44
всего попыток:
80
Сумма нескольких простых чисел равна их произведению. Найти максимально возможное количество таких чисел.
Задачу решили:
50
всего попыток:
77
Найти сумму всех натуральных чисел N, что каждое такое число делится на все натуральные числа не превосходящие N1/2.
Задачу решили:
53
всего попыток:
87
Пусть S(n) - сумма цифр натурального числа в десятичной записи. Найдите максимальное число не превосходящее 2015, которое может быть представлено в виде n+S(n).
Задачу решили:
44
всего попыток:
57
Найти количество корней уравнения sin(sin(sin(sin(x))))=cos(cos(cos(cos(x)))).
Задачу решили:
37
всего попыток:
39
Найти максимальное n такое, что при некотором натуральном k>1 существуют взаимно простые числа a и b для которых верно равенство: ak+bk=3n.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|