Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
28
всего попыток:
94
По кругу написаны 29 ненулевых цифр. Из каждой пары соседних цифр составили двузначное число (при обходе по часовой стрелке первая цифра - число десятков, вторая - число единиц). При этом произведение получившихся 29 чисел является полным квадратом натурального числа. Найти минимальную сумму всех цифр.
Задачу решили:
36
всего попыток:
40
Натуральные числа k, m, n больше 1 и взаимно просты, при этом kmn=10(k+m+n). Найти минимальное значение km+mn+nk.
Задачу решили:
55
всего попыток:
60
Найти минимальный радиус круга, в котором можно поместить без наложений 7 кругов радиуса 1?
Задачу решили:
51
всего попыток:
131
Найти диаметр полуокружности:
Задачу решили:
41
всего попыток:
75
Вова и Маша печатают свои собственные деньги, у каждого свои купюры одного достоинства X и Y, соответственно. Как выяснилось, при помощи комбинации купюр можно сложить почти любые положительные целые числа, кроме 15 чисел. Одним из таких чисел является 18. Найти X+Y.
Задачу решили:
44
всего попыток:
146
Найти количество натуральных решений уравнения x2+10!=y2.
Задачу решили:
68
всего попыток:
85
В шестиугольнике все внутренние углы равны, известны длины некоторых сторон (они указаны на рисунке). Найти длину стсроны, отмеченную знаком вопроса.
Задачу решили:
53
всего попыток:
54
К стороне AB квадрата ABCD прилегает прямоугольный треугольник ABM так, что AB является гипотенузой. Расстояние от точки M до центра квадрата O (точка пересечения диагоналей квадрата) равно 10 см. Найти площадь четырехугольника AOBM.
Задачу решили:
76
всего попыток:
117
В игре У2В3 за каждый ход можно либо умножить число на 2, либо вычесть 3. За какое минимальное число ходов можно из 11 получить 25.
Задачу решили:
71
всего попыток:
88
Найдите площадь желтого прямоугольника.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|